Necessary Conditions and Tight Two-level Convergence Bounds for Parareal and Multigrid Reduction in Time

Parareal and multigrid reduction in time (MGRiT) are two of the most popular parallel-in-time methods. The idea is to treat time integration in a parallel context by using a multigrid method in time. If $\Phi$ is a (fine-grid) time-stepping scheme, let $\Psi$ denote a "coarse-grid" time-stepping scheme chosen to approximate $k$ steps of $\Phi$, $k\geq 1$. In particular, $\Psi$ defines the coarse-grid correction, and evaluating $\Psi$ should be (significantly) cheaper than evaluating $\Phi^k$. A number of papers have studied the convergence of Parareal and MGRiT. However, there have yet to be general conditions developed on the convergence of Parareal or MGRiT that answer simple questions such as, (i) for a given $\Phi$ and $k$, what is the best $\Psi$, or (ii) can Parareal/MGRiT converge for my problem? This work derives necessary and sufficient conditions for the convergence of Parareal and MGRiT applied to linear problems, along with tight two-level convergence bounds. Results rest on the introduction of a "temporal approximation property" (TAP) that indicates how $\Phi^k$ must approximate the action of $\Psi$ on different vectors. Loosely, for unitarily diagonalizable operators, the TAP indicates that fine-grid and coarse-grid time integration schemes must integrate geometrically smooth spatial components similarly, and less so for geometrically high frequency. In the (non-unitarily) diagonalizable setting, the conditioning of each eigenvector, $\mathbf{v}_i$, must also be reflected in how well $\Psi\mathbf{v}_i \sim\Phi^k\mathbf{v}_i$. In general, worst-case convergence bounds are exactly given by $\min \varphi < 1$ such that an inequality along the lines of $\|(\Psi-\Phi^k)\mathbf{v}\| \leq\varphi \|(I - \Psi)\mathbf{v}\|$ holds for all $\mathbf{v}$. Such inequalities are formalized as different realizations of the TAP, and form the basis for convergence of MGRiT and Parareal.

[1]  Martin J. Gander,et al.  On the Superlinear and Linear Convergence of the Parareal Algorithm , 2007, CSE 2007.

[2]  Sui Sun Cheng,et al.  EXPLICIT EIGENVALUES AND INVERSES OF TRIDIAGONAL TOEPLITZ MATRICES WITH FOUR PERTURBED CORNERS , 2008, The ANZIAM Journal.

[3]  Panayot S. Vassilevski,et al.  On Generalizing the Algebraic Multigrid Framework , 2004, SIAM J. Numer. Anal..

[4]  Wen-Chyuan Yueh EIGENVALUES OF SEVERAL TRIDIAGONAL MATRICES , 2005 .

[5]  Tao Zhou,et al.  Convergence Analysis for Three Parareal Solvers , 2015, SIAM J. Sci. Comput..

[6]  Raúl Sánchez,et al.  Mechanisms for the convergence of time-parallelized, parareal turbulent plasma simulations , 2012, J. Comput. Phys..

[7]  J. Lions,et al.  Résolution d'EDP par un schéma en temps « pararéel » , 2001 .

[8]  Michael L. Minion,et al.  TOWARD AN EFFICIENT PARALLEL IN TIME METHOD FOR PARTIAL DIFFERENTIAL EQUATIONS , 2012 .

[9]  Andrew J. Wathen,et al.  Preconditioning and Iterative Solution of All-at-Once Systems for Evolutionary Partial Differential Equations , 2018, SIAM J. Sci. Comput..

[10]  Martin J. Gander,et al.  Multigrid interpretations of the parareal algorithm leading to an overlapping variant and MGRIT , 2018, Comput. Vis. Sci..

[11]  S. Serra,et al.  Spectral and Computational Analysis of Block Toeplitz Matrices Having Nonnegative Definite Matrix-Valued Generating Functions , 1999 .

[12]  Martin Schulz,et al.  A Performance Model for Allocating the Parallelism in a Multigrid-in-Time Solver , 2016, 2016 7th International Workshop on Performance Modeling, Benchmarking and Simulation of High Performance Computer Systems (PMBS).

[13]  Robert D. Falgout,et al.  Parallel time integration with multigrid , 2013, SIAM J. Sci. Comput..

[14]  Paolo Tilli,et al.  Asymptotic Spectra of Hermitian Block Toeplitz Matrices and Preconditioning Results , 2000, SIAM J. Matrix Anal. Appl..

[15]  Graham Horton,et al.  A Space-Time Multigrid Method for Parabolic Partial Differential Equations , 1995, SIAM J. Sci. Comput..

[16]  Thomas A. Manteuffel,et al.  Nonsymmetric Algebraic Multigrid Based on Local Approximate Ideal Restriction (ℓAIR) , 2017, SIAM J. Sci. Comput..

[17]  Martin J. Gander,et al.  Nonlinear Convergence Analysis for the Parareal Algorithm , 2008 .

[18]  Robert D. Falgout,et al.  A parallel-in-time algorithm for variable step multistep methods , 2019, J. Comput. Sci..

[19]  Shu-Lin Wu,et al.  Convergence analysis of some second-order parareal algorithms , 2015 .

[20]  Chen-Song Zhang,et al.  On the Ideal Interpolation Operator in Algebraic Multigrid Methods , 2018, SIAM J. Numer. Anal..

[21]  Daniel Ruprecht,et al.  Wave propagation characteristics of Parareal , 2017, Comput. Vis. Sci..

[22]  Thomas A. Manteuffel,et al.  Reduction-based Algebraic Multigrid for Upwind Discretizations , 2017, 1704.05001.

[23]  N. Anders Petersson,et al.  Two-Level Convergence Theory for Multigrid Reduction in Time (MGRIT) , 2017, SIAM J. Sci. Comput..

[24]  Robert D. Falgout,et al.  Multilevel Convergence Analysis of Multigrid-Reduction-in-Time , 2018, SIAM J. Sci. Comput..

[25]  Stefano Serra Capizzano,et al.  Asymptotic Results on the Spectra of Block Toeplitz Preconditioned Matrices , 1998, SIAM J. Matrix Anal. Appl..

[26]  P. Tilli Singular values and eigenvalues of non-hermitian block Toeplitz matrices , 1996 .

[27]  Stefano Serra,et al.  On the extreme eigenvalues of hermitian (block) toeplitz matrices , 1998 .

[28]  Stefano Serra Capizzano,et al.  Extreme singular values and eigenvalues of non-Hermitian block Toeplitz matrices , 1999 .

[29]  Ulrich Langer,et al.  Domain decomposition methods in science and engineering XVII , 2008 .

[30]  Robert D. Falgout,et al.  Multigrid methods with space–time concurrency , 2017, Comput. Vis. Sci..

[31]  Robert D. Falgout,et al.  Convergence of the multigrid reduction in time algorithm for the linear elasticity equations , 2018, Numer. Linear Algebra Appl..

[32]  Scott P. MacLachlan,et al.  A generalized predictive analysis tool for multigrid methods , 2015, Numer. Linear Algebra Appl..

[33]  Daniel Ruprecht,et al.  Convergence of Parareal with spatial coarsening , 2014 .

[34]  Martin J. Gander,et al.  Analysis of the Parareal Time-Parallel Time-Integration Method , 2007, SIAM J. Sci. Comput..

[35]  Dennis S. Bernstein,et al.  Scalar, Vector, and Matrix Mathematics: Theory, Facts, and Formulas - Revised and Expanded Edition , 2018 .

[36]  Thomas A. Manteuffel,et al.  Adaptive reduction‐based AMG , 2006, Numer. Linear Algebra Appl..