Review: Laser-Ablation Propulsion

LASER ablation propulsion (LAP) is a major new electric propulsion concept with a 35-year history. In LAP, an intense laser beam [pulsed or continuous wave (CW)] strikes a condensedmatter surface (solid or liquid) and produces a jet of vapor or plasma. Just as in a chemical rocket, thrust is produced by the resulting reaction force on the surface. Spacecraft and other objects can be propelled in this way. In some circumstances, there are advantages for this technique compared with other chemical and electric propulsion schemes. It is difficult to make a performance metric for LAP, because only a few of its applications are beyond the research phase and because it can be applied in widely different circumstances that would require entirely different metrics. These applications range from milliwatt-average-power satellite attitude-correction thrusters through kilowatt-average-power systems for reentering near-Earth space debris and megawatt-to-gigawatt systems for direct launch to lowEarth orbit (LEO). We assume an electric laser rather than a gas-dynamic or chemical laser driving the ablation, to emphasize the performance as an electric thruster. How is it possible for moderate laser electrical efficiency to givevery high electrical efficiency? Because laser energy can be used to drive an exothermic reaction in the target material controlled by the laser input, and electrical efficiency only measures the ratio of exhaust power to electrical power. This distinction may seem artificial, but electrical efficiency is a key parameter for space applications, in which electrical power is at a premium. The laser system involved in LAP may be remote from the propelled object (on another spacecraft or planet-based), for example, in laser-induced space-debris reentry or payload launch to low planetary orbit. In other applications (e.g., the laser–plasma microthruster that we will describe), a lightweight laser is part of the propulsion engine onboard the spacecraft.

[1]  E. Sänger Zur Theorie der Photonenraketen , 1953 .

[2]  L I Kuznetsov,et al.  LASER APPLICATIONS AND SYSTEM COMPONENTS: Laser-reactive method for disposal of small space debris , 1994 .

[3]  G. Mourou,et al.  Zettawatt-exawatt lasers and their applications in ultrastrong-field physics , 2002 .

[4]  Wolfgang O. Schall,et al.  Lightcraft Impulse Measurements under Vacuum , 2003 .

[5]  Willy L. Bohn Laser lightcraft performance , 2000, Advanced High-Power Lasers and Applications.

[6]  H. Tahara,et al.  Performance Characteristics of Low‐Power Laser Ablative Thrusters for Small Satellites , 2006 .

[7]  Ikkoh Funaki,et al.  Electromagnetic Acceleration Characteristics for a Laser-Electric Hybrid Thruster , 2008 .

[8]  T. Lippert,et al.  Fundamentals and applications of polymers designed for laser ablation , 2003 .

[9]  Fabio Di Teodoro Megawatt peak-power pulsed fiber sources , 2006 .

[10]  Akihiro Sasoh,et al.  Wall-Propelled, In-Tube Propulsion with Repetitive-Pulse Laser Ablation , 2009 .

[11]  Donald P. Umstadter,et al.  Physics and Applications of Relativistic Plasmas Driven by Ultra-intense Lasers , 2001 .

[12]  J. Sinko,et al.  Laser Propulsion with Liquid Propellants Part I: an Overview , 2008 .

[13]  W. E. Moeckel,et al.  Optimum exhaust velocity for laser-driven rockets , 1975 .

[14]  F. V. Bunkin,et al.  REVIEWS OF TOPICAL PROBLEMS: Use of a laser energy source in producing a reactive thrust , 1976 .

[15]  D. Gavel,et al.  ORION: Clearing near-Earth space debris using a 20-kW, 530-nm, Earth-based, repetitively pulsed laser , 1996 .

[16]  S. Scharring,et al.  Flight Analysis of a Parabolic Lightcraft—Ground‐based Launch , 2008 .

[17]  V. V. Stepanov,et al.  Performance Characteristics of Laser Propulsion Engine Operating both in CW and in Repetitively‐Pulsed Modes , 2006 .

[18]  Stefan Scharring,et al.  Flight Experiments On Energy Scaling For In‐Space Laser Propulsion , 2010 .

[19]  A. Sasoh,et al.  Ablative Impulse Characteristics of Polyacetal with Repetitive CO2 Laser Pulses , 2008 .

[20]  Leik N. Myrabo,et al.  Ground and Flight Tests of a Laser Propelled Vehicle , 1998 .

[21]  D. Gregory,et al.  Ablative laser propulsion: Specific impulse and thrust derived from force measurements , 2002 .

[22]  Z. Zheng,et al.  Transmitted laser propulsion in confined geometry using liquid propellant , 2008 .

[23]  J. Sinko Vaporization and shock wave dynamics for impulse generation in laser propulsion , 2008 .

[24]  Wolfgang Riede,et al.  Comparative lightcraft impulse measurements , 2002, SPIE High-Power Laser Ablation.

[25]  Akihiro Sasoh,et al.  Laser-driven in-tube accelerator , 2001 .

[26]  C. Tipper,et al.  The burning of polymers , 1969 .

[27]  Thomas Lippert,et al.  Tailor-Made Polymers for Laser Ablation , 2001 .

[28]  Franklin B. Mead,et al.  An Overview of the Experimental 50‐cm Laser Ramjet (X‐50LR) Program , 2005 .

[29]  Claude R. Phipps LISK‐BROOM: A laser concept for clearing space junk , 2008 .

[30]  Claude Phipps,et al.  An Alternate Treatment of the Vapor-Plasma Transition , 2011 .

[31]  In-Seuck Jeung,et al.  Impulse Dependence on Propellant Condition in a Laser-Driven In-Tube Accelerator , 2005 .

[32]  Satoshi Hosoda,et al.  Fundamental Researches on Laser Powered Propulsion , 2002 .

[33]  Leik N. Myrabo,et al.  Pulsed Laser Propulsion Performance of 11-cm Parabolic Engines Within the Atmosphere , 2002 .

[34]  Claude R. Phipps,et al.  Performance Test Results for the Laser-Powered Microthruster (PREPRINT) , 2005 .

[35]  L Howarth Similarity and Dimensional Methods in Mechanics , 1960 .

[36]  Akihiro Sasoh,et al.  Impulse enhancement by in-tube operation in laser propulsion , 2002, SPIE High-Power Laser Ablation.

[37]  Claude R. Phipps,et al.  Orion: challenges and benefits , 1998, Other Conferences.

[38]  A. Sasoh,et al.  Ambient Pressure Dependence of Laser-Induced Impulse onto Polyacetal , 2006 .

[39]  Paulo Toro,et al.  Laser-Supported Directed-Energy "Air Spike" in Hypersonic Flow , 2005 .

[40]  Andrew V. Pakhomov,et al.  Binary Solid Propellants for Constant Momentum Missions , 2008 .

[41]  Kimiya Komurasaki,et al.  Numerical analyses on pressure wave propagation in repetitive pulse laser propulsion , 2001 .

[42]  J. C. Jaeger,et al.  Conduction of Heat in Solids , 1952 .

[43]  I. R. McNab,et al.  Launch to space with an electromagnetic railgun , 2003 .

[44]  E. Moses Multi-megajoule NIF: ushering in a new era in high energy density science , 2008, High-Power Laser Ablation.

[45]  C. R. Phipps,et al.  Diode Laser-Driven Microthrusters: A New Departure for Micropropulsion , 2002 .

[46]  Willy L. Bohn,et al.  Laser Propulsion Thrusters for Space Transportation , 2007 .

[47]  Claude R. Phipps,et al.  3ks Specific Impulse with a ns-pulse Laser Microthruster , 2005 .

[48]  M. Kawakami,et al.  Laser-assisted pulsed plasma thruster for space propulsion applications , 2005 .

[49]  Yu. P. Raizer,et al.  SUBSONIC PROPAGATION OF A LIGHT SPARK AND THRESHOLD CONDITIONS FOR MAINTENANCE OF A PLASMA BY RADIATION. , 1970 .

[50]  A. Wokaun,et al.  Polymer ablation: From fundamentals of polymer design to laser plasma thruster , 2007 .

[51]  Alexander Wokaun,et al.  Polymers designed for laser applications: fundamentals and applications , 2002, SPIE High-Power Laser Ablation.

[52]  T. Yabe,et al.  Laser-driven vehicles – from inner-space to outer-space , 2003 .

[53]  A. Sasoh,et al.  Time-Resolved Measurements of Impulse Generation in Pulsed Laser-Ablative Propulsion , 2008 .

[54]  I. Bekey Project Orion: Orbital Debris Removal Using Ground-Based Sensors and Lasers , 1997 .

[55]  A. Wokaun,et al.  Micropropulsion Using a Laser Ablation Jet , 2004 .

[56]  W. Helgeson,et al.  A ns‐Pulse Laser Microthruster , 2006 .

[57]  Paulo Toro,et al.  Investigation of a laser-supported directed-energy air spike in hypersonic flow , 2003 .

[58]  W. Schall Orbital debris removal by laser radiation , 1991 .

[59]  Leon J. Radziemski,et al.  Lasers-Induced Plasmas and Applications , 1989 .

[60]  Ten-See Wang,et al.  Advanced Performance Modeling of Experimental Laser Lightcraft , 2002 .

[61]  Michael D. Perry,et al.  Electron, photon, and ion beams from the relativistic interaction of Petawatt laser pulses with solid targets , 2000 .

[62]  Leik N. Myrabo,et al.  Flight experiments and evolutionary development of a laser-propelled transatmospheric vehicle , 1998, Other Conferences.

[63]  James R. Luke,et al.  Laser-powered multi-newton thrust space engine with variable specific impulse , 2008, High-Power Laser Ablation.

[64]  M. S. Egorov,et al.  Model Test of the Aerospace Laser Propulsion Engine , 2005 .

[65]  Adam P. Bruckner,et al.  Hugoniot analysis of the ram accelerator , 1992 .

[66]  Masashi Yamaguchi,et al.  Laser‐Driven Water‐Powered Propulsion and Air Curtain for Vacuum Insulation , 2003 .

[67]  J. Sinko,et al.  Ablation of Liquids for Laser Propulsion with TEA CO2 Laser , 2006 .

[68]  C. R. Phipps,et al.  Conceptual design of a 170-MJ hydrogen fluoride laser for fusion , 1989 .

[69]  Daniela Hoffmann,et al.  Stabilization and steering of a parabolic laser thermal thruster with an ignition device , 2009 .

[70]  Hideyuki Horisawa,et al.  Characterization of Novel Laser Particle Accelerators for Space Propulsion , 2000 .

[71]  John O. Bagford,et al.  Laser-boosted light sail experiments with the 150-kW LHMEL II CO2 laser , 2002, SPIE High-Power Laser Ablation.

[72]  Shigeaki Uchida,et al.  Fundamental Experiments on Glycerin Propellant Laser Thruster , 2004 .

[73]  Paulo Toro,et al.  Experimental Analysis of Heat Flux to a Blunt Body in Hypersonic Flow with Upstream Laser Energy Deposition — Preliminary Results , 2006 .

[74]  Barrett H. Ripin,et al.  Ablative acceleration of planar targets to high velocities. Memorandum report , 1982 .

[75]  T. Yabe,et al.  Microairplane propelled by laser driven exotic target , 2002 .

[76]  N. I. Chapliev,et al.  Laser air-breathing jet engine , 1977 .

[77]  A. V. Charukhchev,et al.  Modeling of high-energy physical processes using multipurpose laser complexes , 1994 .

[78]  Akihiro Sasoh,et al.  Moderate-Acceleration Launch Using Repetitive-Pulse Laser Ablation in a Tube , 2008 .

[79]  S. C. Rashleigh,et al.  Electromagnetic acceleration of macroparticles to high velocities , 1978 .

[80]  Masashi Yamaguchi,et al.  Numerical and experimental studies of laser propulsion toward micro-airplane , 2002, SPIE High-Power Laser Ablation.

[81]  J. Sinko,et al.  Delrin® for Propulsion with CO2 Laser: Carbon Doping Effects , 2008 .

[82]  J. L. Redding Interstellar Vehicle propelled by Terrestrial Laser Beam , 1967, Nature.

[83]  Claude R. Phipps,et al.  Liquid‐fueled, Laser‐powered, N‐class thrust Space Engine with Variable Specific Impulse , 2008 .

[84]  I. McNab,et al.  Progress on Hypervelocity Railgun Research for Launch to Space , 2008, IEEE Transactions on Magnetics.

[85]  Hiroshi Masuhara,et al.  Novel applications for laser ablation of photopolymers , 2002 .

[86]  Daniela Hoffmann Development and validation of a design model with remotely controllable steering gear for flight experiments on pulsed laser thermal propulsion , 2008 .

[87]  Takashi Yabe,et al.  Near-Term Application of Water-Powered Laser-Propulsion , 2004 .

[88]  Hideyuki Horisawa,et al.  Fundamental Study of a Relativistic Laser‐Accelerated Plasma Thruster , 2003 .

[89]  Thomas Lippert,et al.  Designed Polymers for Ablation , 2007 .

[90]  A. Wokaun,et al.  Micropropulsion using laser ablation , 2004 .

[91]  C. Phipps,et al.  Laser impulse coupling at 130 fs , 2006 .

[92]  V. S. Rachuk,et al.  Experimental Investigations of Laser Propulsion by Using Gas‐Dynamic Laser , 2006 .

[93]  Andrew V. Pakhomov,et al.  Absorption‐Enhanced Liquid Ablatants for Propulsion with TEA CO2 Laser , 2005 .

[94]  R. Goddard A Method of Reaching Extreme Altitudes. , 1920, Nature.

[95]  Hideyuki Horisawa,et al.  A Relativistic Laser-Accelerated Plasma Thruster for Space Propulsion , 2002 .

[96]  T. C. Sangster,et al.  Intense high-energy proton beams from Petawatt-laser irradiation of solids. , 2000, Physical review letters.

[97]  C. Phipps High-Power Laser Ablation III , 1998 .

[98]  Lars Herbeck,et al.  Development and Test of Deployable Ultra-Lightweight CFRP-Booms for a Solar Sail , 2000 .

[99]  W. Schall Laser Radiation for Cleaning Space Debris from Lower Earth Orbits , 2002 .

[100]  Alexander Wokaun,et al.  Polymers for UV and near-IR irradiation , 2001 .

[101]  Hideyuki Horisawa,et al.  A Very‐High‐Specific‐Impulse Relativistic Laser Thruster , 2008 .

[102]  Reino A. Liukonen Laser jet propulsion , 1998, International Symposium on High Power Laser Systems and Applications.

[103]  M. N. Saha LIII. Ionization in the solar chromosphere , 1920 .

[104]  A. N. Panchenko,et al.  Experimental Study of the Laser Ablation Plasma Flow From the Liquid Ga–In Target , 2011, IEEE Transactions on Plasma Science.

[105]  James E. Stewart,et al.  Infrared spectroscopy;: Experimental methods and techniques , 1970 .

[106]  R. F. Harrison,et al.  Impulse coupling to targets in vacuum by KrF, HF, and CO2 single‐pulse lasers , 1988 .

[107]  Herman Krier,et al.  Concepts and status of laser-supported rocket propulsion , 1984 .

[108]  V. I. Konov,et al.  Experimental and theoretical modeling of laser propulsion , 1980 .

[109]  A. Wokaun,et al.  Laser ablation of energetic polymer solutions: effect of viscosity and fluence on the splashing behavior , 2009 .

[110]  Masashi Yamaguchi,et al.  Proposal of Liquid Cannon Target Driven by Fiber Laser for Micro-Thruster in Satellite , 2004 .

[111]  Roger Kelly,et al.  Reconsidering the mechanisms of laser sputtering with Knudsen-layer formation taken into account , 1988 .

[112]  Michael M. Micci,et al.  Trajectory Simulations, Qualitative Analyses and Parametric Studies of A Laser‐Launched Micro‐Satellite Using OTIS , 2006 .

[113]  Shalom Eliezer,et al.  Burn-through of thin aluminum foils by laser-driven ablation (A) , 1979 .

[114]  J. F. L. Simmons,et al.  Was Marx right? or How efficient are laser driven interstellar spacecraft? , 1993 .

[115]  A. Hertzberg,et al.  Ram accelerator - A new chemical method for accelerating projectilesto ultrahigh velocities , 1988 .

[116]  C. Phipps,et al.  Laser Space Propulsion , 2007 .

[117]  A. L. Safronov,et al.  Detonation of CHO working substances in a laser jet engine , 2009 .

[118]  Hermann Oberth Die Rakete zu den Planetenräumen , 1984 .

[119]  Claude R. Phipps,et al.  Laser Plasma Microthruster Performance Evaluation , 2003 .

[120]  M. N. SAHA,et al.  Ionisation in the Solar Chromosphere. , 1920, Nature.

[121]  Wolfgang O. Schall,et al.  Laser Propulsion Systems , 2008 .

[122]  C. R. Phipps,et al.  Ultrashort pulses for impulse generation in laser propulsion applications , 1997 .

[123]  Leik N. Myrabo,et al.  World record flights of beam-riding rocket lightcraft : Demonstration of 'disruptive' propulsion technology , 2001 .

[124]  W. E. Moeckel Comparison of advanced propulsion concepts for deep space exploration. , 1972 .

[125]  C. T. Walters,et al.  Measurement of CO2‐laser‐induced shock pressures above and below LSD‐wave thresholds , 1976 .

[126]  Alexander Wokaun,et al.  Polymers as fuel for laser plasma thrusters: a correlation of thrust with material and plasma properties by mass spectrometry , 2006, SPIE High-Power Laser Ablation.

[127]  Lukas Urech,et al.  Materials for laser propulsion: "liquid" polymers , 2008, High-Power Laser Ablation.

[128]  C. Larson,et al.  Energy conversion in laser propulsion , 2001 .

[129]  R. Srinivasan,et al.  Ablation of polymers and biological tissue by ultraviolet lasers. , 1986, Science.

[130]  W. Schall,et al.  CO2 Laser Absorption in Ablation Plasmas , 2006 .

[131]  J. Ihlemann,et al.  Plasma and plume effects on UV laser ablation of polymers , 2004, SPIE High-Power Laser Ablation.

[132]  Eugen Sängeru,et al.  Strahlungsquellen für Photonenstrahlantriebe , 1959 .

[133]  Willy L. Bohn,et al.  Laser Propulsion Activities in Germany , 2003 .

[134]  Hideyuki Horisawa,et al.  Discharge Characteristics of Laser-Electric Hybrid Thrusters , 2004 .

[135]  Don A. Gregory,et al.  Conical nozzles for pulsed laser propulsion , 2008, High-Power Laser Ablation.

[136]  G. MARX,et al.  Interstellar Vehicle Propelled By Terrestrial Laser Beam , 1966, Nature.

[137]  Claude R. Phipps,et al.  LISP: Laser impulse space propulsion , 1994 .

[138]  Young K. Bae First demonstration of photonic laser thruster (PLT) , 2008, High-Power Laser Ablation.

[139]  Iu. P. Raizer Laser-induced discharge phenomena , 1977 .

[140]  Hideyuki Horisawa,et al.  DISCHARGE CHARACTERISTICS OF A LASER-ASSISTED PLASMA THRUSTER , 2003 .

[141]  Alexander Wokaun,et al.  Designed polymers for laser-based microthrusters: correlation of thrust with material, plasma, and shockwave properties (Plenary Paper) , 2004, SPIE High-Power Laser Ablation.

[142]  Franklin B. Mead,et al.  Benefit of Constant Momentum Propulsion for Large Delta V Missions -- Applications in Laser Propulsion , 2004 .

[143]  A. Wokaun,et al.  Polymers as fuel for laser-based microthrusters: An investigation of thrust, material, plasma and shockwave properties , 2007 .

[144]  K. Baker,et al.  Removing orbital debris with lasers , 2011, 1110.3835.

[145]  Liseikina,et al.  High density collimated beams of relativistic ions produced by petawatt laser pulses in plasmas , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[146]  Paulo Toro,et al.  Schlieren Visualization Technique Applied to the Study of Laser-Induced Breakdown in Low Density Hypersonic Flow , 2006 .

[147]  A. P. Bruckner The ram accelerator: overview and state of the art , 1998 .

[148]  Jonathan W. Campbell,et al.  Very high coupling coefficients at low laser fluence with a structured target , 2000, SPIE High-Power Laser Ablation.

[149]  L. Sedov One-Dimensional Unsteady Motion of a Gas , 1959 .

[150]  Jonathan W. Campbell,et al.  Optimum parameters for laser launching objects into low Earth orbit , 2000 .

[151]  Andrew V. Pakhomov,et al.  Laser Propulsion with Liquid Propellants Part II: Thin Films , 2008 .

[152]  T. Lippert Laser application of polymers , 2004 .

[153]  Wolfgang O. Schall,et al.  Characterization of the Absorption Wave Produced by CO2 Laser Ablation of a Solid Propellant , 2005 .

[154]  Yu . A. Rezunkov,et al.  Efficiency of High-Power Laser Propulsion , 2011 .

[155]  C. Phipps,et al.  Modeling CO2 laser ablation impulse of polymers in vapor and plasma regimes , 2009 .

[156]  A. Pirri Theory for momentum transfer to a surface with a high‐power laser , 1973 .

[157]  Ikkoh Funaki,et al.  Measurement of ion acceleration characteristics of a laser-electrostatic hybrid microthruster for space propulsion applications , 2008 .

[158]  Franklin B. Mead,et al.  Energy conversion in laser propulsion: III , 2002, SPIE High-Power Laser Ablation.

[159]  Wilhelm Mayerhofer,et al.  Pulsed CO2-laser with 15-kW average power at 100-Hz rep-rate , 1997, International Symposium on High Power Laser Systems and Applications.

[160]  Wolfgang Riede,et al.  Lightcraft experiments in Germany , 2000, SPIE High-Power Laser Ablation.

[161]  Franklin B. Mead,et al.  Energy conversion in laser propulsion. II , 2002 .

[162]  Hideyuki Horisawa,et al.  Electromagnetic Acceleration Characteristics of Laser-Electric Hybrid Thrusters , 2006 .