Three Formulations of the Kuramoto Model as a System of Polynomial Equations

We compare three formulations of stationary equations of the Kuramoto model as systems of polynomial equations. In the comparison, we present bounds on the numbers of real equilibria based on the work of Bernstein, Kushnirenko, and Khovanskii, and performance of methods for the optimisation over the set of equilibria based on the work of Lasserre, both of which could be of independent interest.

[1]  Béla Bollobás,et al.  Random Graphs , 1985 .

[2]  Density of states of continuous and discrete spin models: a case study , 2011, 1110.1276.

[3]  Oliver Mason,et al.  On Computing the Critical Coupling Coefficient for the Kuramoto Model on a Complete Bipartite Graph , 2009, SIAM J. Appl. Dyn. Syst..

[4]  Jeremi K. Ochab,et al.  Synchronization of Coupled Oscillators in a Local One-Dimensional Kuramoto Model , 2009, 0909.0043.

[5]  Xiaoshen Wang,et al.  Counting Affine Roots of Polynomial Systems via Pointed Newton Polytopes , 1996, J. Complex..

[6]  A. Khovanskii Newton polyhedra and the genus of complete intersections , 1978 .

[7]  Florian Dörfler,et al.  Algebraic geometrization of the Kuramoto model: Equilibria and stability analysis. , 2014, Chaos.

[8]  Tsung-Lin Lee,et al.  HOM4PS-2.0: a software package for solving polynomial systems by the polyhedral homotopy continuation method , 2008, Computing.

[9]  Xiaoshen Wang,et al.  The BKK root count in Cn , 1996, Math. Comput..

[10]  Tsung-Lin Lee,et al.  Hom4PS-3: A Parallel Numerical Solver for Systems of Polynomial Equations Based on Polyhedral Homotopy Continuation Methods , 2014, ICMS.

[11]  Richard Taylor,et al.  There is no non-zero stable fixed point for dense networks in the homogeneous Kuramoto model , 2011, 1109.4451.

[12]  Cheng-Shang Chang Calculus , 2020, Bicycle or Unicycle?.

[13]  Marco Pettini,et al.  Phase Transitions and Topology Changes in Configuration Space , 2003 .

[14]  E. Davison,et al.  The numerical solution of A'Q+QA =-C , 1968 .

[15]  Jakub Marecek,et al.  Optimal Power Flow as a Polynomial Optimization Problem , 2014, IEEE Transactions on Power Systems.

[16]  D. Mehta,et al.  Enumerating Copies in the First Gribov Region on the Lattice in up to four Dimensions , 2014, 1403.0555.

[17]  F. Bullo,et al.  Synchronization in complex oscillator networks and smart grids , 2012, Proceedings of the National Academy of Sciences.

[18]  S. Strogatz From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators , 2000 .

[19]  Carlos J. Tavora,et al.  Equilibrium Analysis of Power Systems , 1972 .

[20]  J. Baillieul,et al.  Geometric critical point analysis of lossless power system models , 1982 .

[21]  A. Klos,et al.  Physical aspects of the nonuniqueness of load flow solutions , 1991 .

[22]  J. Baillieul The critical point analysis of electric power systems , 1984, The 23rd IEEE Conference on Decision and Control.

[23]  Florian Dörfler,et al.  Synchronization in complex networks of phase oscillators: A survey , 2014, Autom..

[24]  Dhagash Mehta,et al.  Enumerating Gribov copies on the lattice , 2012, 1203.4847.

[25]  Yoshiki Kuramoto,et al.  Self-entrainment of a population of coupled non-linear oscillators , 1975 .

[26]  Johan P. Hansen,et al.  INTERSECTION THEORY , 2011 .

[27]  Bernard Mourrain,et al.  Computer Algebra Methods for Studying and Computing Molecular Conformations , 1999, Algorithmica.

[28]  A. G. Kushnirenko,et al.  Newton polytopes and the Bezout theorem , 1976 .

[29]  Juan P. Torres,et al.  The Kuramoto model: A simple paradigm for synchronization phenomena , 2005 .

[30]  D. N. Bernshtein The number of roots of a system of equations , 1975 .

[31]  Florian Dörfler,et al.  Synchronization and transient stability in power networks and non-uniform Kuramoto oscillators , 2009, Proceedings of the 2010 American Control Conference.

[32]  J. Yorke,et al.  Numerical solution of a class of deficient polynomial systems , 1987 .

[33]  M. Abramowitz,et al.  Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .

[34]  L. Casetti,et al.  Microcanonical relation between continuous and discrete spin models. , 2010, Physical review letters.

[35]  Jean B. Lasserre,et al.  Global Optimization with Polynomials and the Problem of Moments , 2000, SIAM J. Optim..

[36]  Oliver Mason,et al.  Global Phase-Locking in Finite Populations of Phase-Coupled Oscillators , 2007, SIAM J. Appl. Dyn. Syst..

[37]  Dhagash Mehta,et al.  Stationary point analysis of the one-dimensional lattice Landau gauge fixing functional, aka random phase XY Hamiltonian , 2010, 1010.5335.

[38]  Tien-Yien Li Solving polynomial systems , 1987 .

[39]  Bernd Sturmfels,et al.  Bernstein’s theorem in affine space , 1997, Discret. Comput. Geom..

[40]  Jiawang Nie,et al.  Optimality conditions and finite convergence of Lasserre’s hierarchy , 2012, Math. Program..

[41]  Dhagash Mehta,et al.  On the Network Topology Dependent Solution Count of the Algebraic Load Flow Equations , 2015, IEEE Transactions on Power Systems.

[42]  D. Mehta,et al.  Lattice vs. Continuum: Landau Gauge Fixing and 't Hooft-Polyakov Monopoles , 2010 .

[43]  Masakazu Muramatsu,et al.  SparsePOP: a Sparse Semidefinite Programming Relaxation of Polynomial Optimization Problems , 2005 .

[44]  Dhagash Mehta,et al.  Finding all the stationary points of a potential-energy landscape via numerical polynomial-homotopy-continuation method. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[45]  J. Maurice Rojas,et al.  A Convex Geometric Approach to Counting the Roots of a Polynomial System , 1994, Theor. Comput. Sci..

[46]  Ioannis Z. Emiris,et al.  Sparse elimination and applications in kinematics , 1994 .

[47]  S. Strogatz,et al.  Stability of incoherence in a population of coupled oscillators , 1991 .

[48]  J. Hauenstein,et al.  Real solutions to systems of polynomial equations and parameter continuation , 2015 .

[49]  Dhagash Mehta,et al.  Exploring the energy landscape of XY models , 2012, 1211.4800.

[50]  Jos F. Sturm,et al.  A Matlab toolbox for optimization over symmetric cones , 1999 .

[51]  Michael Kastner,et al.  Stationary-point approach to the phase transition of the classical XY chain with power-law interactions. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[52]  S. Strogatz,et al.  The spectrum of the locked state for the Kuramoto model of coupled oscillators , 2005 .

[53]  Daniel K. Molzahn,et al.  Toward topologically based upper bounds on the number of power flow solutions , 2015, 2016 American Control Conference (ACC).

[54]  Dirk Aeyels,et al.  Existence of Partial Entrainment and Stability of Phase Locking Behavior of Coupled Oscillators , 2004 .

[55]  Jakub Marecek,et al.  Power Flow as an Algebraic System , 2014, ArXiv.

[56]  Dhagash Mehta,et al.  Potential energy landscapes for the 2D XY model: minima, transition states, and pathways. , 2013, The Journal of chemical physics.

[57]  Daniel K. Molzahn,et al.  Recent advances in computational methods for the power flow equations , 2015, 2016 American Control Conference (ACC).

[58]  Florian Dörfler,et al.  On the Critical Coupling for Kuramoto Oscillators , 2010, SIAM J. Appl. Dyn. Syst..

[59]  Jonathan D. Hauenstein,et al.  Numerically Solving Polynomial Systems with Bertini , 2013, Software, environments, tools.

[60]  Andrew J. Sommese,et al.  The numerical solution of systems of polynomials - arising in engineering and science , 2005 .