Latent Gaussian Processes for Distribution Estimation of Multivariate Categorical Data

Multivariate categorical data occur in many applications of machine learning. One of the main difficulties with these vectors of categorical variables is sparsity. The number of possible observations grows exponentially with vector length, but dataset diversity might be poor in comparison. Recent models have gained significant improvement in supervised tasks with this data. These models embed observations in a continuous space to capture similarities between them. Building on these ideas we propose a Bayesian model for the unsupervised task of distribution estimation of multivariate categorical data. We model vectors of categorical variables as generated from a non-linear transformation of a continuous latent space. Non-linearity captures multi-modality in the distribution. The continuous representation addresses sparsity. Our model ties together many existing models, linking the linear categorical latent Gaussian model, the Gaussian process latent variable model, and Gaussian process classification. We derive inference for our model based on recent developments in sampling based variational inference. We show empirically that the model outperforms its linear and discrete counterparts in imputation tasks of sparse data.

[1]  Neil D. Lawrence,et al.  Bayesian Gaussian Process Latent Variable Model , 2010, AISTATS.

[2]  Geoffrey E. Hinton,et al.  Learning Distributed Representations of Concepts Using Linear Relational Embedding , 2001, IEEE Trans. Knowl. Data Eng..

[3]  Michael E. Tipping,et al.  Probabilistic Principal Component Analysis , 1999 .

[4]  D. Böhning Multinomial logistic regression algorithm , 1992 .

[5]  Neil D. Lawrence,et al.  Probabilistic Non-linear Principal Component Analysis with Gaussian Process Latent Variable Models , 2005, J. Mach. Learn. Res..

[6]  Pinto Rafael,et al.  Breast Cancer Dataset , 2015 .

[7]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[8]  Tom Schaul,et al.  Unit Tests for Stochastic Optimization , 2013, ICLR.

[9]  Xi Chen,et al.  Variance Reduction for Stochastic Gradient Optimization , 2013, NIPS.

[10]  Carl E. Rasmussen,et al.  A Unifying View of Sparse Approximate Gaussian Process Regression , 2005, J. Mach. Learn. Res..

[11]  Mohammad Emtiyaz Khan,et al.  Piecewise Bounds for Estimating Bernoulli-Logistic Latent Gaussian Models , 2011, ICML.

[12]  Tom Minka,et al.  Non-conjugate Variational Message Passing for Multinomial and Binary Regression , 2011, NIPS.

[13]  Miguel Lázaro-Gredilla,et al.  Doubly Stochastic Variational Bayes for non-Conjugate Inference , 2014, ICML.

[14]  Neil D. Lawrence,et al.  Gaussian Processes for Big Data , 2013, UAI.

[15]  Yoshua Bengio,et al.  Neural Probabilistic Language Models , 2006 .

[16]  Max Welling,et al.  Auto-Encoding Variational Bayes , 2013, ICLR.

[17]  Chong Wang,et al.  Stochastic variational inference , 2012, J. Mach. Learn. Res..

[18]  Yoram Singer,et al.  Adaptive Subgradient Methods for Online Learning and Stochastic Optimization , 2011, J. Mach. Learn. Res..

[19]  John D. Lafferty,et al.  Correlated Topic Models , 2005, NIPS.

[20]  Jason Weston,et al.  A unified architecture for natural language processing: deep neural networks with multitask learning , 2008, ICML '08.

[21]  Michael I. Jordan,et al.  A Variational Approach to Bayesian Logistic Regression Models and their Extensions , 1997, AISTATS.

[22]  Michalis K. Titsias,et al.  Variational Learning of Inducing Variables in Sparse Gaussian Processes , 2009, AISTATS.

[23]  Daan Wierstra,et al.  Stochastic Backpropagation and Approximate Inference in Deep Generative Models , 2014, ICML.

[24]  Michael I. Jordan,et al.  Variational Bayesian Inference with Stochastic Search , 2012, ICML.

[25]  Alan Agresti,et al.  Bayesian inference for categorical data analysis , 2005, Stat. Methods Appl..

[26]  Matthew D. Zeiler ADADELTA: An Adaptive Learning Rate Method , 2012, ArXiv.

[27]  Mohammad Emtiyaz Khan,et al.  A Stick-Breaking Likelihood for Categorical Data Analysis with Latent Gaussian Models , 2012, AISTATS.

[28]  RasmussenCarl Edward,et al.  A Unifying View of Sparse Approximate Gaussian Process Regression , 2005 .

[29]  Carl E. Rasmussen,et al.  Distributed Variational Inference in Sparse Gaussian Process Regression and Latent Variable Models , 2014, NIPS.