On the structure of the inverse-feasible region of a linear program

Abstract Given a set of feasible solutions X to a linear program, we study the set of objectives that make X optimal, known as the inverse-feasible region. We show the relationship between the dimension of a face of a polyhedron and the dimension of the corresponding inverse-feasible region, which leads to necessary and sufficient conditions of the extreme, boundary, and inner points of a linear program. We also characterize the set of objectives that render a given solution uniquely optimal.

[1]  Andrew J. Schaefer,et al.  Inverse integer programming , 2009, Optim. Lett..

[2]  Vishal Gupta,et al.  Inverse Optimization: A New Perspective on the Black-Litterman Model , 2012, Oper. Res..

[3]  Michael Pavlin,et al.  Inverse Optimization for the Recovery of Market Structure from Market Outcomes: An Application to the MISO Electricity Market , 2017 .

[4]  Zhenhong Liu,et al.  Some reverse location problems , 2000, Eur. J. Oper. Res..

[5]  Garud Iyengar,et al.  Inverse conic programming with applications , 2005, Oper. Res. Lett..

[6]  Timothy C. Y. Chan,et al.  Generalized Inverse Multiobjective Optimization with Application to Cancer Therapy , 2014, Oper. Res..

[7]  Andrew J. Schaefer,et al.  Eliciting Patients' Revealed Preferences: An Inverse Markov Decision Process Approach , 2010, Decis. Anal..

[8]  Jianzhon Zhang,et al.  Calculating some inverse linear programming problems , 1996 .

[9]  Gerard Sierksma,et al.  Balinski—Tucker simplex tableaus: Dimensions, degeneracy degrees, and interior points of optimal faces , 1998, Math. Program..

[10]  O. Mangasarian Uniqueness of solution in linear programming , 1979 .

[11]  Andrew J. Schaefer,et al.  A polyhedral characterization of the inverse-feasible region of a mixed-integer program , 2015, Oper. Res. Lett..

[12]  Clemens Heuberger,et al.  Inverse Combinatorial Optimization: A Survey on Problems, Methods, and Results , 2004, J. Comb. Optim..

[13]  Gautam Appa,et al.  On the uniqueness of solutions to linear programs , 2002, J. Oper. Res. Soc..

[14]  Jianzhon Zhang,et al.  A further study on inverse linear programming problems , 1999 .

[15]  Laurence A. Wolsey,et al.  Integer and Combinatorial Optimization , 1988 .

[16]  P. Toint,et al.  The inverse shortest paths problem with upper bounds on shortest paths costs , 1997 .

[17]  Stephen P. Boyd,et al.  Imputing a convex objective function , 2011, 2011 IEEE International Symposium on Intelligent Control.

[18]  Isaiah L. Kantor,et al.  Description of the optimal solution set of the linear programming problem and the dimension formula , 1993 .

[19]  Archis Ghate Inverse optimization in countably infinite linear programs , 2015, Oper. Res. Lett..

[20]  Marvin D. Troutt,et al.  Behavioral Estimation of Mathematical Programming Objective Function Coefficients , 2006, Manag. Sci..

[21]  Turgay Ayer,et al.  Inverse optimization for assessing emerging technologies in breast cancer screening , 2015, Ann. Oper. Res..

[22]  Ravindra K. Ahuja,et al.  Inverse Optimization , 2001, Oper. Res..

[23]  Vishal Gupta,et al.  Data-driven estimation in equilibrium using inverse optimization , 2013, Mathematical Programming.