Mitochondrial transplantation rescues neuronal cells from ferroptosis.

[1]  E. Verpoorte,et al.  Differentiation and on axon-guidance chip culture of human pluripotent stem cell-derived peripheral cholinergic neurons for airway neurobiology studies , 2022, Frontiers in Pharmacology.

[2]  A. Dolga,et al.  Transcriptomic and epigenomic landscapes of Alzheimer's disease evidence mitochondrial-related pathways. , 2022, Biochimica et biophysica acta. Molecular cell research.

[3]  Keren Ben-Yaakov,et al.  Oxidative stress facilitates exogenous mitochondria internalization and survival in retinal ganglion precursor-like cells , 2022, Scientific Reports.

[4]  W. D. den Dunnen,et al.  The Potential of Ferroptosis-Targeting Therapies for Alzheimer’s Disease: From Mechanism to Transcriptomic Analysis , 2021, Frontiers in Aging Neuroscience.

[5]  M. Heneka,et al.  Microglia jointly degrade fibrillar alpha-synuclein cargo by distribution through tunneling nanotubes , 2021, Cell.

[6]  Ling-Qiang Zhu,et al.  Ferroptosis, a Potential Therapeutic Target in Alzheimer’s Disease , 2021, Frontiers in Cell and Developmental Biology.

[7]  H. Bayır,et al.  Elucidating the contribution of mitochondrial glutathione to ferroptosis in cardiomyocytes , 2021, Redox biology.

[8]  S. Flora,et al.  Ferroptosis: A potential therapeutic target for neurodegenerative diseases , 2021, Journal of biochemical and molecular toxicology.

[9]  B. Yan,et al.  Ferroptosis and traumatic brain injury , 2021, Brain Research Bulletin.

[10]  Shengxi Wu,et al.  Mitochondria transplantation protects traumatic brain injury via promoting neuronal survival and astrocytic BDNF. , 2021, Translational research : the journal of laboratory and clinical medicine.

[11]  B. Stockwell,et al.  Ferroptosis: mechanisms, biology and role in disease , 2021, Nature Reviews Molecular Cell Biology.

[12]  D. Tang,et al.  Ferroptotic damage promotes pancreatic tumorigenesis through a TMEM173/STING-dependent DNA sensor pathway , 2020, Nature Communications.

[13]  S. Bydlowski,et al.  Ferroptosis Mechanisms Involved in Neurodegenerative Diseases , 2020, International journal of molecular sciences.

[14]  R. Lightowlers,et al.  Mitochondrial transplantation—a possible therapeutic for mitochondrial dysfunction? , 2020, EMBO reports.

[15]  Y. Kuwahara,et al.  Mitochondrial transplantation ameliorates ischemia/reperfusion-induced kidney injury in rat. , 2020, Biochimica et biophysica acta. Molecular basis of disease.

[16]  Barbara M. Bakker,et al.  SK channel-mediated metabolic escape to glycolysis inhibits ferroptosis and supports stress resistance in C. elegans , 2020, Cell Death & Disease.

[17]  D. Turnbull,et al.  Mitochondrial Diseases: Hope for the Future , 2020, Cell.

[18]  J. Goaillard,et al.  Diversity of Axonal and Dendritic Contributions to Neuronal Output , 2020, Frontiers in Cellular Neuroscience.

[19]  Shi-kun Yang,et al.  Emerging Role of Ferroptosis in Acute Kidney Injury , 2019, Oxidative medicine and cellular longevity.

[20]  T. Arnould,et al.  Mitochondrial Uncoupling: A Key Controller of Biological Processes in Physiology and Diseases , 2019, Cells.

[21]  Hong Zhang,et al.  Endocytosis-mediated mitochondrial transplantation: Transferring normal human astrocytic mitochondria into glioma cells rescues aerobic respiration and enhances radiosensitivity , 2019, Theranostics.

[22]  Michael N. Economo,et al.  Reconstruction of 1,000 Projection Neurons Reveals New Cell Types and Organization of Long-Range Connectivity in the Mouse Brain , 2019, Cell.

[23]  G. Ateş,et al.  Oxytosis/Ferroptosis—(Re-) Emerging Roles for Oxidative Stress-Dependent Non-apoptotic Cell Death in Diseases of the Central Nervous System , 2018, Front. Neurosci..

[24]  C. Culmsee,et al.  Mitochondrial rescue prevents glutathione peroxidase‐dependent ferroptosis , 2018, Free radical biology & medicine.

[25]  Heiko J. Luhmann,et al.  Homeostatic interplay between electrical activity and neuronal apoptosis in the developing neocortex , 2017, Neuroscience.

[26]  M. Mattson,et al.  Brain metabolism in health, aging, and neurodegeneration , 2017, The EMBO journal.

[27]  C. Culmsee,et al.  BID links ferroptosis to mitochondrial cell death pathways , 2017, Redox biology.

[28]  A. Chiò,et al.  Projected increase in amyotrophic lateral sclerosis from 2015 to 2040 , 2016, Nature Communications.

[29]  E. Lo,et al.  Transfer of mitochondria from astrocytes to neurons after stroke , 2016, Nature.

[30]  P. D. del Nido,et al.  Mitochondrial transplantation for therapeutic use , 2016, Clinical and Translational Medicine.

[31]  S. Kuo,et al.  Allogeneic/xenogeneic transplantation of peptide-labeled mitochondria in Parkinson's disease: restoration of mitochondria functions and attenuation of 6-hydroxydopamine-induced neurotoxicity. , 2016, Translational research : the journal of laboratory and clinical medicine.

[32]  Makoto Yaegashi,et al.  An essential role for functional lysosomes in ferroptosis of cancer cells. , 2016, The Biochemical journal.

[33]  H. Juárez Olguín,et al.  The Role of Dopamine and Its Dysfunction as a Consequence of Oxidative Stress , 2015, Oxidative medicine and cellular longevity.

[34]  Simon C Watkins,et al.  Mesenchymal stem cells use extracellular vesicles to outsource mitophagy and shuttle microRNAs , 2015, Nature Communications.

[35]  F. Cecconi,et al.  Oxidative stress and autophagy: the clash between damage and metabolic needs , 2014, Cell Death and Differentiation.

[36]  M. Kaul,et al.  Cellular protection using Flt3 and PI3Kα inhibitors demonstrates multiple mechanisms of oxidative glutamate toxicity , 2014, Nature Communications.

[37]  A. Dolga,et al.  Regulators of mitochondrial Ca2+ homeostasis in cerebral ischemia , 2014, Cell and Tissue Research.

[38]  Matthew E. Welsch,et al.  Regulation of Ferroptotic Cancer Cell Death by GPX4 , 2014, Cell.

[39]  J. Weuve,et al.  Alzheimer disease in the United States (2010–2050) estimated using the 2010 census , 2013, Neurology.

[40]  Douglas B. Cowan,et al.  Transplantation of Autologously‐Derived Mitochondria Protects the Heart from Ischemia‐Reperfusion Injury , 2013, American journal of physiology. Heart and circulatory physiology.

[41]  W. Sivitz,et al.  Bioenergetic Effects of Mitochondrial-Targeted Coenzyme Q Analogs in Endothelial Cells , 2012, Journal of Pharmacology and Experimental Therapeutics.

[42]  M. R. Lamprecht,et al.  Ferroptosis: An Iron-Dependent Form of Nonapoptotic Cell Death , 2012, Cell.

[43]  N. Plesnila,et al.  KCa2 channels activation prevents [Ca2+]i deregulation and reduces neuronal death following glutamate toxicity and cerebral ischemia , 2011, Cell Death and Disease.

[44]  M. Feany,et al.  Protein Misfolding and Oxidative Stress Promote Glial-Mediated Neurodegeneration in an Alexander Disease Model , 2011, The Journal of Neuroscience.

[45]  V. Skulachev,et al.  Mitochondria-targeted plastoquinone derivatives as tools to interrupt execution of the aging program. 2. Treatment of some ROS- and Age-related diseases (heart arrhythmia, heart infarctions, kidney ischemia, and stroke) , 2008, Biochemistry (Moscow).

[46]  Jyh-Jang Sun,et al.  Activity-dependent regulation of neuronal apoptosis in neonatal mouse cerebral cortex. , 2008, Cerebral cortex.

[47]  C. Tanner,et al.  Projected number of people with Parkinson disease in the most populous nations, 2005 through 2030 , 2007, Neurology.

[48]  M. Dosemeci,et al.  Potential occupational risks for neurodegenerative diseases. , 2005, American journal of industrial medicine.

[49]  K. Kannan,et al.  Oxidative stress and apoptosis. , 2000, Pathophysiology : the official journal of the International Society for Pathophysiology.

[50]  J. Shay,et al.  Mitochondrial transformation of mammalian cells , 1982, Nature.