Distributed and boundarycontrol of the viscous burgers' equation

Earlier results for distributed and boundary controls of the viscous Burgers' equation were established by Burns et al. and Byrnes et al. In their results there are technical restrictions on the sizes of the initial data. In this paper we relax these restrictions, as well as treat the Burgers' equation with other nonlinear boundary conditions.

[1]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[2]  E. Hopf The partial differential equation ut + uux = μxx , 1950 .

[3]  Jerrold E. Marsden,et al.  Basic Complex Analysis , 1973 .

[4]  D. Gilbarg,et al.  Elliptic Partial Differential Equa-tions of Second Order , 1977 .

[5]  R. Temam Navier-Stokes Equations , 1977 .

[6]  J. S. Gibson,et al.  The Riccati Integral Equations for Optimal Control Problems on Hilbert Spaces , 1979 .

[7]  Amnon Pazy,et al.  Semigroups of Linear Operators and Applications to Partial Differential Equations , 1992, Applied Mathematical Sciences.

[8]  Karl Kunisch,et al.  The linear regulator problem for parabolic systems , 1984 .

[9]  S. Weerakoon,et al.  An initial value control problem for burgers' equation , 1985 .

[10]  A. J. Pritchard,et al.  The linear quadratic control problem for infinite dimensional systems with unbounded input and outpu , 1987 .

[11]  Roger Temam,et al.  Attractors for the Be´nard problem: existence and physical bounds on their fractal dimension , 1987 .

[12]  R. Temam Navier-Stokes Equations and Nonlinear Functional Analysis , 1987 .

[13]  R. Temam Infinite Dimensional Dynamical Systems in Mechanics and Physics Springer Verlag , 1993 .

[14]  Daniel B. Henry Geometric Theory of Semilinear Parabolic Equations , 1989 .

[15]  R. Temam,et al.  Gevrey class regularity for the solutions of the Navier-Stokes equations , 1989 .

[16]  D. Gilliam,et al.  Stability of certain distributed parameter systems by low dimensional controllers: a root locus approach , 1990, 29th IEEE Conference on Decision and Control.

[17]  R. Temam,et al.  On some control problems in fluid mechanics , 1990 .

[18]  J. Burns,et al.  A control problem for Burgers' equation with bounded input/output , 1991 .

[19]  Christopher I. Byrnes,et al.  Boundary feedback design for nonlinear distributed parameter systems , 1991, [1991] Proceedings of the 30th IEEE Conference on Decision and Control.

[20]  J. Burns,et al.  A stabilization problem for Burgers’ equation with unbounded control and observation , 1991 .

[21]  Karl Kunisch,et al.  Estimation and Control of Distributed Parameter Systems , 1991 .

[22]  Kazufumi Ito,et al.  Unbounded observation and boundary control problems for Burgers equation , 1991, [1991] Proceedings of the 30th IEEE Conference on Decision and Control.

[23]  Hantaek Bae Navier-Stokes equations , 1992 .

[24]  R. Rogers,et al.  An introduction to partial differential equations , 1993 .

[25]  R. Temam,et al.  Feedback control for unsteady flow and its application to the stochastic Burgers equation , 1993, Journal of Fluid Mechanics.

[26]  Oleg Yu. Imanuvilov,et al.  On approximate controllability of the Stokes system , 1993 .

[27]  B. Belkhouche,et al.  Acknowledgements We Would like to Thank , 1993 .

[28]  C. Byrnes Root-Locus and Boundary Feedback Design for a Class of Distributed Parameter Systems , 1994 .

[29]  Max Gunzburger,et al.  Analysis, approximation, and computation of a coupled solid/fluid temperature control problem , 1994 .

[30]  Andrei V. Fursikov,et al.  Local exact controllability of the Navier-Stokes equations , 1996 .

[31]  Edriss S. Titi,et al.  GEVREY REGULARITY FOR NONLINEAR ANALYTIC PARABOLIC EQUATIONS , 1998 .

[32]  G. Gustafson,et al.  Boundary Value Problems of Mathematical Physics , 1998 .