Numerical and experimental determination of three-dimensional multiple crack growth in fatigue

[1]  M. H. Aliabadi,et al.  A boundary element method for three‐dimensional elastoplastic problems , 1998 .

[2]  M. H. Aliabadi,et al.  Energy domain integral applied to solve center and double-edge crack problems in three-dimensions , 1998 .

[3]  M. H. Aliabadi,et al.  A three‐dimensional boundary element formulation for the elastoplastic analysis of cracked bodies , 1998 .

[4]  J. L. Otegui,et al.  Controlled toe waviness as a means to increase fatigue resistance of automatic welds in transverse loading , 1997 .

[5]  J. L. Otegui,et al.  A technique to produce automatic welds with enhanced fatigue crack propagation lives under transverse loading , 1997 .

[6]  M. H. Aliabadi,et al.  Three-dimensional BEM analysis for fatigue crack growth in welded components , 1997 .

[7]  D. Rooke,et al.  Numerical Fracture Mechanics , 1990 .

[8]  Wole Soboyejo,et al.  A numerical investigation of the interaction and coalescence of twin coplanar semi-elliptical fatigue cracks , 1989 .

[9]  K. Hussain,et al.  Corrosion cracking of gas-carrying pipelines , 1989 .

[10]  M. Aliabadi,et al.  Dual boundary element method for three-dimensional fracture mechanics analysis , 1992 .

[11]  J. L. Otegui,et al.  A strain gauge technique for monitoring small fatigue cracks in welds , 1991 .

[12]  G. Sih Mechanics of fracture initiation and propagation , 1990 .

[13]  C. Brebbia,et al.  Boundary Element Techniques , 1984 .

[14]  W. Elber The Significance of Fatigue Crack Closure , 1971 .