Parameter extraction of photovoltaic models from measured I-V characteristics curves using a hybrid trust-region reflective algorithm

Accurate, efficient and reliable parameter extraction of solar photovoltaic (PV) models from the measured current-voltage (I-V) characteristic curves is important for evaluation, modelling, and diagnosis of the actual operating state of in-situ PV arrays. In recent years, numerical heuristic optimization algorithms based parameter extraction methods have been proposed. However, the efficiency and reliability of these methods are limited due to heuristic or stochastic searching strategies. In this paper, by combining the trust-region reflective (TRR) deterministic algorithm with the artificial bee colony (ABC) metaheuristic algorithm, a new hybrid algorithm ABC-TRR is proposed to improve the parameter extraction of PV models. The ABC-TRR algorithm combines the global exploration capability of the ABC and the local exploitation of the TRR, which achieves a good tradeoff among accuracy, convergence and reliability. The proposed ABC-TRR hybrid algorithm is evaluated and compared with other state-of-the-art algorithms using the standard I-V curves of the benchmark Photowatt-PWP201 PV module and RTC France solar cell as well as the measured I-V curves of a laboratory PV module/string/array. Comprehensive experimental analysis and comparison results demonstrate that the proposed ABC-TRR algorithm achieves the same level of accuracy as the best reported algorithms with the highest overall reliability. More importantly, the ABC-TRR algorithm converges 4.69 times faster than the best-reported algorithms on average. In view of these advantages, the proposed ABC-TRR algorithm is a promising alternative for accurately, efficiently and reliably extracting the parameters of PV models from measured I-V curves. In addition, it was experimentally demonstrated that the parameter extraction result can be used to indicate the partial shading and abnormal degradation conditions.

[1]  Jorge J. Moré,et al.  Computing a Trust Region Step , 1983 .

[2]  N. Rajasekar,et al.  A new hybrid bee pollinator flower pollination algorithm for solar PV parameter estimation , 2017 .

[3]  Kashif Ishaque,et al.  Cell modelling and model parameters estimation techniques for photovoltaic simulator application: A review , 2015 .

[4]  Alireza Rezazadeh,et al.  Artificial bee swarm optimization algorithm for parameters identification of solar cell models , 2013 .

[5]  A. Rezaee Jordehi,et al.  Parameter estimation of solar photovoltaic (PV) cells: A review , 2016 .

[6]  Violeta Holmes,et al.  Photovoltaic fault detection algorithm based on theoretical curves modelling and fuzzy classification system , 2017 .

[7]  Yuqing He,et al.  Parameter extraction of solar cell models using mutative-scale parallel chaos optimization algorithm , 2014 .

[8]  Gonzalo Pajares,et al.  Parameter identification of solar cells using artificial bee colony optimization , 2014 .

[9]  Dalia Yousri,et al.  Flower Pollination Algorithm based solar PV parameter estimation , 2015 .

[10]  Lijun Wu,et al.  Parameters identification of photovoltaic models using hybrid adaptive Nelder-Mead simplex algorithm based on eagle strategy , 2016 .

[11]  Dhiaa Halboot Muhsen,et al.  Parameters extraction of double diode photovoltaic module’s model based on hybrid evolutionary algorithm , 2015 .

[12]  Xin Wang,et al.  Parameters identification of photovoltaic models using self-adaptive teaching-learning-based optimization , 2017 .

[13]  Richard H. Byrd,et al.  Approximate solution of the trust region problem by minimization over two-dimensional subspaces , 1988, Math. Program..

[14]  Thomas F. Coleman,et al.  An Interior Trust Region Approach for Nonlinear Minimization Subject to Bounds , 1993, SIAM J. Optim..

[15]  S. S. Chandel,et al.  Performance and degradation analysis for long term reliability of solar photovoltaic systems: A review , 2013 .

[16]  Z. Salam,et al.  An accurate modelling of the two-diode model of PV module using a hybrid solution based on differential evolution , 2016 .

[17]  Lin Lu,et al.  Development of a model to simulate the performance characteristics of crystalline silicon photovoltaic modules/strings/arrays , 2014 .

[18]  T. Easwarakhanthan,et al.  Nonlinear Minimization Algorithm for Determining the Solar Cell Parameters with Microcomputers , 1986 .

[19]  Diego Oliva,et al.  Parameter estimation of photovoltaic cells using an improved chaotic whale optimization algorithm , 2017 .

[20]  Mike Duke,et al.  The numerical calculation of single-diode solar-cell modelling parameters , 2014 .

[21]  Jianzhong Wu,et al.  An Overview of the Smart Grid in Great Britain , 2015 .

[22]  Abdessamad Kobi,et al.  Degradations of silicon photovoltaic modules: A literature review , 2013 .

[23]  Nasrudin Abd Rahim,et al.  Solar cell parameters identification using hybrid Nelder-Mead and modified particle swarm optimization , 2016 .

[24]  A. R. Jordehi Enhanced leader particle swarm optimisation (ELPSO): An efficient algorithm for parameter estimation of photovoltaic (PV) cells and modules , 2018 .

[25]  Dinesh C. S. Bisht,et al.  A three diode model for industrial solar cells and estimation of solar cell parameters using PSO algorithm , 2015 .

[26]  F. Dkhichi,et al.  Parameter identification of solar cell model using Levenberg–Marquardt algorithm combined with simulated annealing , 2014 .

[27]  Wei Chen,et al.  An iterative approach for modeling photovoltaic modules without implicit equations , 2017 .

[28]  T. Khatib,et al.  Extraction of photovoltaic module model's parameters using an improved hybrid differential evolution/electromagnetism-like algorithm , 2015 .

[29]  Sílvio Mariano,et al.  A new high performance method for determining the parameters of PV cells and modules based on guaranteed convergence particle swarm optimization , 2018 .

[30]  N. Tong,et al.  A parameter extraction technique exploiting intrinsic properties of solar cells , 2016 .

[31]  Teuku Meurah Indra Mahlia,et al.  Characterization of PV panel and global optimization of its model parameters using genetic algorithm , 2013 .

[32]  J. Appelbaum,et al.  Parameters extraction of solar cells – A comparative examination of three methods , 2014 .

[33]  Fernando Fausto,et al.  A Chaos-Embedded Gravitational Search Algorithm for the Identification of Electrical Parameters of Photovoltaic Cells , 2017 .

[34]  Dervis Karaboga,et al.  A comparative study of Artificial Bee Colony algorithm , 2009, Appl. Math. Comput..

[35]  Wenxiang Zhao,et al.  Parameters identification of solar cell models using generalized oppositional teaching learning based optimization , 2016 .

[36]  Wenyin Gong,et al.  Parameter extraction of solar cell models using repaired adaptive differential evolution , 2013 .

[37]  Lei Guo,et al.  Parameter identification and sensitivity analysis of solar cell models with cat swarm optimization algorithm , 2016 .

[38]  Vineet Kumar,et al.  PV cell and module efficient parameters estimation using Evaporation Rate based Water Cycle Algorithm , 2017, Swarm Evol. Comput..

[39]  Meiying Ye,et al.  Parameter extraction of solar cells using particle swarm optimization , 2009 .

[40]  Wyatt K. Metzger,et al.  The role of amorphous silicon and tunneling in heterojunction with intrinsic thin layer (HIT) solar cells , 2009 .

[41]  Thomas F. Coleman,et al.  A Subspace, Interior, and Conjugate Gradient Method for Large-Scale Bound-Constrained Minimization Problems , 1999, SIAM J. Sci. Comput..

[42]  Lijun Wu,et al.  Intelligent fault diagnosis of photovoltaic arrays based on optimized kernel extreme learning machine and I-V characteristics , 2017 .

[43]  D. Maskell,et al.  Parameter estimation of solar cells and modules using an improved adaptive differential evolution algorithm , 2013 .

[44]  M. F. AlHajri,et al.  Optimal extraction of solar cell parameters using pattern search , 2012 .

[45]  Mohamed A. Awadallah,et al.  Variations of the bacterial foraging algorithm for the extraction of PV module parameters from nameplate data , 2016 .

[46]  Saad Mekhilef,et al.  Solar cell parameters extraction based on single and double-diode models: A review , 2016 .

[47]  Efstratios I. Batzelis,et al.  A Method for the Analytical Extraction of the Single-Diode PV Model Parameters , 2016, IEEE Transactions on Sustainable Energy.

[48]  Weidong Xiao,et al.  Comprehensive Parameterization of Solar Cell: Improved Accuracy With Simulation Efficiency , 2016, IEEE Transactions on Industrial Electronics.

[49]  Yongchang Yu,et al.  Lambert W-function based exact representation for double diode model of solar cells: Comparison on fitness and parameter extraction , 2016 .

[50]  Ahmad Rezaee Jordehi,et al.  Time varying acceleration coefficients particle swarm optimisation (TVACPSO): A new optimisation algorithm for estimating parameters of PV cells and modules , 2016 .

[51]  Siva Ramakrishna Madeti,et al.  Online fault detection and the economic analysis of grid-connected photovoltaic systems , 2017 .

[52]  Alessandra Di Gangi,et al.  A procedure to calculate the five-parameter model of crystalline silicon photovoltaic modules on the basis of the tabular performance data , 2013 .

[53]  Leandro dos Santos Coelho,et al.  Determination of photovoltaic modules parameters at different operating conditions using a novel bird mating optimizer approach , 2015 .

[54]  Javier Cubas,et al.  Explicit Expressions for Solar Panel Equivalent Circuit Parameters Based on Analytical Formulation and the Lambert W-Function , 2014 .

[55]  Abdellatif Obbadi,et al.  Parameters estimation of the single and double diode photovoltaic models using a Gauss–Seidel algorithm and analytical method: A comparative study , 2017 .

[56]  Xu Chen,et al.  Parameters identification of photovoltaic models using an improved JAYA optimization algorithm , 2017 .

[57]  Jun-Young Park,et al.  A novel datasheet-based parameter extraction method for a single-diode photovoltaic array model , 2015 .

[58]  Hany M. Hasanien,et al.  Shuffled Frog Leaping Algorithm for Photovoltaic Model Identification , 2015, IEEE Transactions on Sustainable Energy.

[59]  N. Rajasekar,et al.  Parameter extraction of two diode solar PV model using Fireworks algorithm , 2016 .

[60]  Yong Wang,et al.  Parameter estimation of photovoltaic modules using a hybrid flower pollination algorithm , 2017 .