Scheme for realizing quantum-information storage and retrieval from quantum memory based on nitrogen-vacancy centers

[1]  A. Steane Overhead and noise threshold of fault-tolerant quantum error correction , 2002, quant-ph/0207119.

[2]  P. Zoller,et al.  Hybrid quantum devices and quantum engineering , 2009, 0911.3835.

[3]  F. Jelezko,et al.  Observation of coherent oscillations in a single electron spin. , 2004, Physical review letters.

[4]  K. Mølmer,et al.  QUANTUM COMPUTATION WITH IONS IN THERMAL MOTION , 1998, quant-ph/9810039.

[5]  Erik Lucero,et al.  Photon shell game in three-resonator circuit quantum electrodynamics , 2010, 1011.3080.

[6]  G. Guo,et al.  Integrated photonic qubit quantum computing on a superconducting chip , 2009, 0909.5307.

[7]  A. Imamoğlu Cavity QED based on collective magnetic dipole coupling: spin ensembles as hybrid two-level systems. , 2008, Physical review letters.

[8]  Zhang-qi Yin,et al.  Entanglement of nitrogen-vacancy-center ensembles using transmission line resonators and a superconducting phase qubit , 2011 .

[9]  M. Markham,et al.  Ultralong spin coherence time in isotopically engineered diamond. , 2009, Nature materials.

[10]  Zhi‐Bo Feng Quantum state transfer between hybrid qubits in a circuit QED , 2012 .

[11]  J Wrachtrup,et al.  Strong coupling of a spin ensemble to a superconducting resonator. , 2010, Physical review letters.

[12]  Franco Nori,et al.  Quantum two-level systems in Josephson junctions as naturally formed qubits. , 2006, Physical review letters.

[13]  A. Zagoskin,et al.  Tunable coupling of superconducting qubits. , 2002, Physical review letters.

[14]  H. Fröhlich,et al.  Theory of the superconducting state. I. The ground state at the absolute zero of temperature , 1950 .

[15]  Time-dependent Frohlich transformation approach for two-atom entanglement generated by successive passage through a cavity , 2006, quant-ph/0610102.

[16]  Alexandre Blais,et al.  Superconducting qubit with Purcell protection and tunable coupling. , 2010, Physical review letters.

[17]  J. S. Hodges,et al.  Repetitive Readout of a Single Electronic Spin via Quantum Logic with Nuclear Spin Ancillae , 2009, Science.

[18]  L. Childress,et al.  Supporting Online Material for , 2006 .

[19]  M. Feng,et al.  Room-temperature implementation of the Deutsch-Jozsa algorithm with a single electronic spin in diamond. , 2010, Physical review letters.

[20]  Molecular ensemble-based remote quantum storage for charge qubit via a quasidark state , 2009, 0904.2420.

[21]  Collins,et al.  Vacancy-related centers in diamond. , 1992, Physical review. B, Condensed matter.

[22]  S. Girvin,et al.  Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation , 2004, cond-mat/0402216.

[23]  D. D. Awschalom,et al.  Supporting Online Material for Coherent Dynamics of a Single Spin Interacting with an Adjustable Spin Bath , 2008 .

[24]  S. Barrett,et al.  Superconducting cavity bus for single nitrogen-vacancy defect centers in diamond , 2009, 0912.3586.

[25]  L. Jiang,et al.  Quantum Register Based on Individual Electronic and Nuclear Spin Qubits in Diamond , 2007, Science.

[26]  Zhang-qi Yin,et al.  High-fidelity quantum memory using nitrogen-vacancy center ensemble for hybrid quantum computation , 2011 .

[27]  Jens Koch,et al.  Coupling superconducting qubits via a cavity bus , 2007, Nature.

[28]  A. Wallraff,et al.  Fabrication and characterization of superconducting circuit QED devices for quantum computation , 2005, IEEE Transactions on Applied Superconductivity.

[29]  S. Girvin,et al.  Observation of high coherence in Josephson junction qubits measured in a three-dimensional circuit QED architecture. , 2011, Physical review letters.

[30]  D. DiVincenzo,et al.  The Physical Implementation of Quantum Computation , 2000, quant-ph/0002077.

[31]  Siyuan Han,et al.  Coherent Temporal Oscillations of Macroscopic Quantum States in a Josephson Junction , 2002, Science.

[32]  P. Zoller,et al.  A quantum spin transducer based on nanoelectromechanical resonator arrays , 2009, 0908.0316.

[33]  A S Sørensen,et al.  Coupling nitrogen-vacancy centers in diamond to superconducting flux qubits. , 2010, Physical review letters.

[34]  Entanglement generation of nitrogen-vacancy centers via coupling to nanometer-sized resonators and a superconducting interference device , 2010 .

[35]  A. Cleland,et al.  Quantum Mechanics of a Macroscopic Variable: The Phase Difference of a Josephson Junction , 1988, Science.

[36]  M. Feng,et al.  Quantum dynamics and quantum state transfer between separated nitrogen-vacancy centers embedded in photonic crystal cavities , 2011 .

[37]  M. Feng,et al.  Two-mode squeezing of distant nitrogen-vacancy-center ensembles by manipulating the reservoir , 2012 .

[38]  Guang-Can Guo,et al.  Teleportation of atomic states within cavities in thermal states , 2001 .

[39]  Matthew Sellars,et al.  Nitrogen-vacancy center in diamond: Model of the electronic structure and associated dynamics , 2006 .

[40]  Guang-Can Guo,et al.  Controllable coupling of superconducting transmission-line resonators , 2007 .

[41]  J. Wrachtrup,et al.  Multipartite Entanglement Among Single Spins in Diamond , 2008, Science.

[42]  J. Martinis,et al.  Rabi oscillations in a large Josephson-junction qubit. , 2002, Physical review letters.

[43]  M. S. Zubairy,et al.  Quantum optics: Frontmatter , 1997 .