Double-dimers, the Ising model and the hexahedron recurrence

We define and study a recurrence relation in Z 3 , called the hexahedron recurrence, which is similar to the octahedron recurrence (Hirota bilinear difference equation) and cube recurrence (Miwa equation). Like these examples, solutions to the hexahedron recurrence are partition sums for edge configurations on a certain graph, and have a natural interpretation in terms of cluster algebras. We give an explicit correspondence between monomials in the Laurent expansions arising in the recurrence with certain double-dimer configurations of a graph. We compute limit shapes for the corresponding double-dimer configurations.The Kashaev difference equation arising in the Ising model Y-Delta relation is a special case of the hexahedron recurrence. In particular this reveals the cluster nature underlying the Ising model. The above relation allows us to prove a Laurent phenomenon for the Kashaev difference equation.

[1]  David E Speyer,et al.  An arctic circle theorem for Groves , 2005, J. Comb. Theory, Ser. A.

[2]  David E Speyer Perfect matchings and the octahedron recurrence , 2004 .

[3]  Yuliy Baryshnikov,et al.  Asymptotics of multivariate sequences, part III: Quadratic points , 2008 .

[4]  Robin Pemantle,et al.  Principal minors and rhombus tilings , 2014, 1404.1354.

[5]  David E Speyer,et al.  The Cube Recurrence , 2004, Electron. J. Comb..

[6]  Mark C. Wilson,et al.  Analytic Combinatorics in Several Variables , 2013 .

[7]  David Bruce Wilson,et al.  Trees and Matchings , 2000, Electron. J. Comb..

[8]  Bernard Leclerc,et al.  Cluster algebras , 2014, Proceedings of the National Academy of Sciences.

[9]  Y. C. Verdière,et al.  Réseaux électriques planaires I , 1994 .

[10]  Mark C. Wilson,et al.  Asymptotics of Multivariate Sequences: I. Smooth Points of the Singular Variety , 2002, J. Comb. Theory, Ser. A.

[11]  S. Fomin,et al.  Cluster algebras I: Foundations , 2001, math/0104151.

[12]  Mihai Ciucu,et al.  A Complementation Theorem for Perfect Matchings of Graphs Having a Cellular Completion , 1998, J. Comb. Theory, Ser. A.

[13]  R. Kenyon,et al.  Limit shapes and the complex Burgers equation , 2005, math-ph/0507007.

[14]  Abdelmalek Salem,et al.  Condensation of Determinants , 2007, 0712.0822.

[15]  Sergey Fomin,et al.  The Laurent Phenomenon , 2002, Adv. Appl. Math..

[16]  Greg Kuperberg,et al.  Alternating-Sign Matrices and Domino Tilings (Part II) , 1992 .

[17]  A. Lehman Wye-Delta Transformation in Probablilistic Networks , 1963 .

[18]  Greg Kuperberg,et al.  Alternating-Sign Matrices and Domino Tilings (Part I) , 1992 .

[19]  R. Kashaev On discrete three-dimensional equations associated with the local Yang-Baxter relation , 1995, solv-int/9512005.

[20]  Tomoki Nakanishi,et al.  T-systems and Y-systems in integrable systems , 2010, 1010.1344.

[21]  J. Propp,et al.  Alternating sign matrices and domino tilings , 1991, math/9201305.

[22]  Lauren K. Williams,et al.  Cluster algebras: an introduction , 2012, 1212.6263.

[23]  C. L. Dodgson,et al.  IV. Condensation of determinants, being a new and brief method for computing their arithmetical values , 1867, Proceedings of the Royal Society of London.