High Channel Mobility 4H-SiC MOSFETs by Antimony Counter-Doping

Channel mobility of >100 cm2V-1s-1 has been obtained on enhancement mode 4H-SiC MOSFETs using an antimony (Sb) doped surface channel in conjunction with nitric oxide (NO) postoxidation annealing. Temperature dependence of the channel mobility indicates that Sb, being an n-type dopant, reduces the surface electric field while the NO anneal reduces the interface trap density, thereby improving the channel mobility. This letter highlights the importance of semiconductor/dielectric materials processes that reduce the transverse surface electric field for improved channel mobility in 4H-SiC MOSFETs.

[1]  Anant K. Agarwal,et al.  Temperature Dependence of Inversion Layer Carrier Concentration and Hall Mobility in 4H-SiC MOSFETs , 2012 .

[2]  A. La Magna,et al.  SiO2/4H-SiC interface doping during post-deposition-annealing of the oxide in N2O or POCl3 , 2013 .

[3]  Hiroshi Yano,et al.  Improved Inversion Channel Mobility in 4H-SiC MOSFETs on Si Face Utilizing Phosphorus-Doped Gate Oxide , 2010, IEEE Electron Device Letters.

[4]  T. Fuyuki,et al.  Removal of near-interface traps at SiO2/4H–SiC (0001) interfaces by phosphorus incorporation , 2010 .

[5]  F. Giannazzo,et al.  Correlating macroscopic and nanoscale electrical modifications of SiO2/4H-SiC interfaces upon post-oxidation-annealing in N2O and POCl3 , 2012 .

[6]  M. V. Rao,et al.  Ion-implantation in SiC and GaN , 1999 .

[7]  K. Adachi,et al.  High channel mobility in normally-off 4H-SiC buried channel MOSFETs , 2001, IEEE Electron Device Letters.

[8]  V. Tilak,et al.  Electron-Scattering Mechanisms in Heavily Doped Silicon Carbide MOSFET Inversion Layers , 2007, IEEE Transactions on Electron Devices.

[9]  Lin Cheng,et al.  Static Performance of 20 A, 1200 V 4H-SiC Power MOSFETs at Temperatures of −187°C to 300°C , 2012, Journal of Electronic Materials.

[10]  S. Dhar,et al.  Enhanced Inversion Mobility on 4H-SiC $(\hbox{11}\overline{\hbox{2}} \hbox{0})$ Using Phosphorus and Nitrogen Interface Passivation , 2013, IEEE Electron Device Letters.

[11]  Y. Hayafuji,et al.  Ab initio study of substitutional impurity atoms in 4H-SiC , 2008 .

[12]  N. Goldsman,et al.  Numerical and experimental characterization of 4H-silicon carbide lateral metal-oxide-semiconductor field-effect transistor , 2006 .

[13]  A. Agarwal,et al.  Some Critical Materials and Processing Issues in SiC Power Devices , 2008 .