Bayesian maximum entropy approach and its applications: a review

The present paper reviews the conceptual framework and development of the Bayesian Maximum Entropy (BME) approach. BME has been considered as a significant breakthrough and contribution to applied stochastics by introducing an improved, knowledge-based modeling framework for spatial and spatiotemporal information. In this work, one objective is the overview of distinct BME features. By offering a foundation free of restrictive assumptions that limit comparable techniques, an ability to integrate a variety of prior knowledge bases, and rigorous accounting for both exact and uncertain data, the BME approach was coined as introducing modern spatiotemporal geostatistics. A second objective is to illustrate BME applications and adoption within numerous different scientific disciplines. We summarize examples and real-world studies that encompass the perspective of science of the total environment, including atmosphere, lithosphere, hydrosphere, and ecosphere, while also noting applications that extend beyond these fields. The broad-ranging application track suggests BME as an established, valuable tool for predictive spatial and space–time analysis and mapping. This review concludes with the present status of BME, and tentative paths for future methodological research, enhancements, and extensions.

[1]  Robert P. Anderson,et al.  Maximum entropy modeling of species geographic distributions , 2006 .

[2]  G. Matheron Les variables régionalisées et leur estimation : une application de la théorie de fonctions aléatoires aux sciences de la nature , 1965 .

[3]  Yang Liu,et al.  Estimating ground-level PM2.5 in China using satellite remote sensing. , 2014, Environmental science & technology.

[4]  Saravanan Arunachalam,et al.  Bayesian maximum entropy integration of ozone observations and model predictions: an application for attainment demonstration in North Carolina. , 2010, Environmental science & technology.

[5]  George Christakos,et al.  BME analysis of spatiotemporal particulate matter distributions in North Carolina , 2000 .

[6]  Sergey Kazakov,et al.  Modeling Spatial Uncertainty for Locally Uncertain Data , 2010 .

[7]  X. X. Ruan,et al.  Uncertainty Propagation Analysis of T/R Modules , 2019, International Journal of Computational Methods.

[8]  Patrick Bogaert,et al.  Continuous-valued map reconstruction with the Bayesian Maximum Entropy , 2003 .

[9]  T. Kazi,et al.  Exposure of children to arsenic in drinking water in the Tharparkar region of Sindh, Pakistan. , 2016, The Science of the total environment.

[10]  Yanchen Bo,et al.  Bayesian maximum entropy data fusion of field-observed leaf area index (LAI) and Landsat Enhanced Thematic Mapper Plus-derived LAI , 2013 .

[11]  Yanchen Bo,et al.  Spatiotemporal fusion of multiple‐satellite aerosol optical depth (AOD) products using Bayesian maximum entropy method , 2016 .

[12]  Paul Hewson,et al.  Temporal GIS: Advanced Functions for Field-based Applications , 2003 .

[13]  P. Georgopoulos,et al.  GEOSTATISTICAL ESTIMATION OF HORIZONTAL HYDRAULIC CONDUCTIVITY FOR THE KIRKWOOD‐COHANSEY AQUIFER 1 , 2004 .

[14]  M. Ezzati,et al.  Air pollution in Accra neighborhoods: spatial, socioeconomic, and temporal patterns. , 2010, Environmental science & technology.

[15]  R. Lark,et al.  Geostatistics for Environmental Scientists , 2001 .

[16]  Cass T. Miller,et al.  Computational Bayesian maximum entropy solution of a stochastic advection‐reaction equation in the light of site‐specific information , 2002 .

[17]  Xiaojun Li,et al.  Coal seam surface modeling and updating with multi-source data integration using Bayesian Geostatistics , 2013 .

[18]  K. Mengersen,et al.  Eliciting Expert Knowledge in Conservation Science , 2012, Conservation biology : the journal of the Society for Conservation Biology.

[19]  Jiaping Wu,et al.  An online spatiotemporal prediction model for dengue fever epidemic in Kaohsiung (Taiwan) , 2014, Biometrical journal. Biometrische Zeitschrift.

[20]  Alexander Kolovos,et al.  Geostatistical space–time mapping of house prices using Bayesian maximum entropy , 2016, International Journal of Geographical Information Science.

[21]  Shaobo Zhong,et al.  Exploring mean annual precipitation values (2003-2012) in a specific area (36°N-43°N, 113°E-120°E) using meteorological, elevational, and the nearest distance to coastline variables. , 2016 .

[22]  Hwa-Lung Yu,et al.  Estimation of Fine Particulate Matter in Taipei Using Landuse Regression and Bayesian Maximum Entropy Methods , 2011, International journal of environmental research and public health.

[23]  Ashantha Goonetilleke,et al.  Impacts of traffic and rainfall characteristics on heavy metals build-up and wash-off from urban roads. , 2010, Environmental science & technology.

[24]  Tara G Martin,et al.  A guide to eliciting and using expert knowledge in Bayesian ecological models. , 2010, Ecology letters.

[25]  Tsun-Kuo Chang,et al.  Spatiotemporal analysis and mapping of oral cancer risk in changhua county (taiwan): an application of generalized bayesian maximum entropy method. , 2010, Annals of epidemiology.

[26]  Michael Jerrett,et al.  Spatiotemporal Modeling of Ozone Levels in Quebec (Canada): A Comparison of Kriging, Land-Use Regression (LUR), and Combined Bayesian Maximum Entropy–LUR Approaches , 2014, Environmental health perspectives.

[27]  G. Christakos A Bayesian/maximum-entropy view to the spatial estimation problem , 1990 .

[28]  Yanchen Bo,et al.  Blending multi-resolution satellite sea surface temperature (SST) products using Bayesian maximum entropy method , 2013 .

[29]  George Christakos,et al.  Modern Spatiotemporal Geostatistics , 2000 .

[30]  Richard Simon,et al.  Bias in error estimation when using cross-validation for model selection , 2006, BMC Bioinformatics.

[31]  K. Messier,et al.  Nitrate Variability in Groundwater of North Carolina using Monitoring and Private Well Data Models , 2014, Environmental science & technology.

[33]  George Christakos,et al.  Model-driven development of covariances for spatiotemporal environmental health assessment , 2012, Environmental Monitoring and Assessment.

[34]  G. Christakos,et al.  BME-based hydrogeologic parameter estimation in groundwater flow modelling , 2002 .

[35]  J. Chen,et al.  The moving-window Bayesian maximum entropy framework: estimation of PM2.5 yearly average concentration across the contiguous United States , 2012, Journal of Exposure Science and Environmental Epidemiology.

[36]  T. Huntington Evidence for intensification of the global water cycle: Review and synthesis , 2006 .

[37]  Marc L. Serre,et al.  Modeling the space/time distribution of particulate matter in Thailand and optimizing its monitoring network , 2007 .

[38]  Mark L. Wilson,et al.  Spatiotemporal statistical analysis of influenza mortality risk in the State of California during the period 1997–2001 , 2008 .

[39]  E. Jaynes Information Theory and Statistical Mechanics , 1957 .

[40]  Marc Van Meirvenne,et al.  Soil salinity mapping using spatio-temporal kriging and Bayesian maximum entropy with interval soft data , 2005 .

[41]  GEORGE CHRISTAKOS,et al.  A study of the spatiotemporal health impacts of ozone exposure , 1999, Journal of Exposure Analysis and Environmental Epidemiology.

[42]  Daniel Krewski,et al.  Comparing the Health Effects of Ambient Particulate Matter Estimated Using Ground-Based versus Remote Sensing Exposure Estimates , 2016, Environmental health perspectives.

[43]  George Christakos,et al.  On certain classes of spatiotemporal random fields with applications to space-time data processing , 1991, IEEE Trans. Syst. Man Cybern..

[44]  G. Christakos,et al.  An Application of the Holistochastic Human Exposure Methodology to Naturally Occurring Arsenic in Bangladesh Drinking Water , 2003, Risk analysis : an official publication of the Society for Risk Analysis.

[45]  George Christakos,et al.  On the assimilation of uncertain physical knowledge bases: Bayesian and non-Bayesian techniques. , 2002 .

[46]  George Christakos,et al.  BME representation of particulate matter distributions in the state of California on the basis of uncertain measurements , 2001 .

[47]  L. Sedda,et al.  Spatio-temporal analysis of tree height in a young cork oak plantation , 2011, Int. J. Geogr. Inf. Sci..

[48]  Aaron M. Ellison,et al.  Bayesian inference in ecology , 2004 .

[49]  Alexander Kolovos,et al.  Interactive spatiotemporal modelling of health systems: the SEKS–GUI framework , 2007 .

[50]  B. Efron Estimating the Error Rate of a Prediction Rule: Improvement on Cross-Validation , 1983 .

[51]  D. D'Or,et al.  Application of the BME approach to soil texture mapping , 2001 .

[52]  Carlos F.M. Coimbra,et al.  Objective framework for optimal distribution of solar irradiance monitoring networks , 2015 .

[53]  Xiaofeng Yang,et al.  Merging daily sea surface temperature data from multiple satellites using a Bayesian maximum entropy method , 2015, Frontiers of Earth Science.

[54]  B. Weir,et al.  Bayesian statistics in genetics: a guide for the uninitiated. , 1999, Trends in genetics : TIG.

[55]  Qiang Liu,et al.  Mapping High-Resolution Soil Moisture over Heterogeneous Cropland Using Multi-Resource Remote Sensing and Ground Observations , 2015, Remote. Sens..

[56]  Alexander Kolovos,et al.  Emerging patterns in multi-sourced data modeling uncertainty , 2016 .

[57]  G. Heuvelink,et al.  Uncertainty propagation analysis of an N2O emission model at the plot and landscape scale. , 2010 .

[58]  Zev Ross,et al.  A hybrid approach to estimating national scale spatiotemporal variability of PM2.5 in the contiguous United States. , 2013, Environmental science & technology.

[59]  Tao Liu,et al.  Ambient air pollution and years of life lost in Ningbo, China , 2016, Scientific Reports.

[60]  J. Salas,et al.  A COMPARATIVE ANALYSIS OF TECHNIQUES FOR SPATIAL INTERPOLATION OF PRECIPITATION , 1985 .

[61]  Patricia Gober,et al.  Bayesian Maximum Entropy Mapping and the Soft Data Problem in Urban Climate Research , 2008 .

[62]  L. Duczmal,et al.  Nonparametric intensity bounds for the delineation of spatial clusters , 2011, International journal of health geographics.

[63]  J. San-Miguel-Ayanz,et al.  A methodology to generate a synergetic land-cover map by fusion of different land-cover products , 2012, Int. J. Appl. Earth Obs. Geoinformation.

[64]  George Christakos,et al.  Spatiotemporal Characterization of Ambient PM2.5 Concentrations in Shandong Province (China). , 2015, Environmental science & technology.

[65]  D. G. Krige A statistical analysis of some of the borehole values in the Orange Free State Goldfield , 1952 .

[66]  Dionissios T. Hristopulos,et al.  Practical Calculation of Non-Gaussian Multivariate Moments in Spatiotemporal Bayesian Maximum Entropy Analysis , 2001 .

[67]  K. Messier,et al.  Integrating address geocoding, land use regression, and spatiotemporal geostatistical estimation for groundwater tetrachloroethylene. , 2012, Environmental science & technology.

[68]  George Christakos,et al.  Bayesian Maximum Entropy Analysis and Mapping: A Farewell to Kriging Estimators? , 1998 .

[69]  Marc L. Serre,et al.  Comparison of Geostatistical Interpolation and Remote Sensing Techniques for Estimating Long-Term Exposure to Ambient PM2.5 Concentrations across the Continental United States , 2012, Environmental health perspectives.

[70]  K. Vatalis,et al.  Spatiotemporal risk assessment of soil pollution in a lignite mining region using a Bayesian maximum entropy (BME) approach , 2013 .

[71]  Alexander Kolovos,et al.  Total ozone mapping by integrating databases from remote sensing instruments and empirical models , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[72]  G. Heuvelink,et al.  Bayesian Maximum Entropy prediction of soil categories using a traditional soil map as soft information , 2008 .

[73]  Elizabeth A. Wentz,et al.  Applying Bayesian Maximum Entropy to extrapolating local‐scale water consumption in Maricopa County, Arizona , 2008 .

[74]  Q. Zhao,et al.  Antibiotics in Drinking Water in Shanghai and Their Contribution to Antibiotic Exposure of School Children. , 2016, Environmental science & technology.

[75]  Alexander Kolovos,et al.  Spatiotemporal Infectious Disease Modeling: A BME-SIR Approach , 2013, PloS one.

[76]  George Christakos,et al.  Integrative Problem-Solving in a Time of Decadence , 2010 .

[77]  James V. Zidek,et al.  Statistical Analysis of Environmental Space-Time Processes , 2006 .

[78]  William C Miller,et al.  INTERNATIONAL JOURNAL OF HEALTH GEOGRAPHICS METHODOLOGY Open Access , 2022 .

[79]  George Christakos,et al.  Interdisciplinary Public Health Reasoning and Epidemic Modelling: The Case of Black Death , 2005 .

[80]  C. Ou,et al.  The burden of COPD mortality due to ambient air pollution in Guangzhou, China , 2016, Scientific Reports.

[81]  Patricia Gober,et al.  Space–time forecasting using soft geostatistics: a case study in forecasting municipal water demand for Phoenix, Arizona , 2010 .

[82]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[83]  Hwa-Lung Yu,et al.  Quantile-based Bayesian maximum entropy approach for spatiotemporal modeling of ambient air quality levels. , 2013, Environmental science & technology.

[84]  Shrikant I Bangdiwala,et al.  Spatiotemporal Approaches to Analyzing Pedestrian Fatalities: The Case of Cali, Colombia , 2015, Traffic injury prevention.

[85]  K. Messier,et al.  Estimation of Groundwater Radon in North Carolina Using Land Use Regression and Bayesian Maximum Entropy. , 2015, Environmental science & technology.

[86]  Audrey de Nazelle,et al.  Large scale air pollution estimation method combining land use regression and chemical transport modeling in a geostatistical framework. , 2014, Environmental science & technology.

[87]  Sw. Banerjee,et al.  Hierarchical Modeling and Analysis for Spatial Data , 2003 .

[88]  Estimating the local mean for Bayesian maximum entropy by generalized least squares and maximum likelihood, and an application to the spatial analysis of a censored soil variable , 2007 .

[89]  Hone-Jay Chu,et al.  Understanding space–time patterns of groundwater system by empirical orthogonal functions: A case study in the Choshui River alluvial fan, Taiwan , 2010 .

[90]  Marc L. Serre,et al.  An LUR/BME Framework to Estimate PM2.5 Explained by on Road Mobile and Stationary Sources , 2014, Environmental science & technology.

[91]  Wuchun Cao,et al.  Risk analysis for the highly pathogenic avian influenza in Mainland China using meta-modeling , 2010, Chinese science bulletin = Kexue tongbao.

[92]  Hwa-Lung Yu,et al.  Advanced space-time predictive analysis with STAR-BME , 2012, SIGSPATIAL/GIS.

[93]  Eric S. Money,et al.  Space/time analysis of fecal pollution and rainfall in an eastern North Carolina estuary. , 2009, Environmental science & technology.

[94]  Using river distance and existing hydrography data can improve the geostatistical estimation of fish tissue mercury at unsampled locations. , 2011, Environmental science & technology.

[95]  Zhongli Zhu,et al.  Estimating the spatial distribution of soil moisture based on Bayesian maximum entropy method with auxiliary data from remote sensing , 2014, Int. J. Appl. Earth Obs. Geoinformation.

[96]  Alexander Kolovos,et al.  Multi-perspective analysis and spatiotemporal mapping of air pollution monitoring data. , 2010, Environmental science & technology.

[97]  Xiaojun Xu,et al.  Improving Estimations of Spatial Distribution of Soil Respiration Using the Bayesian Maximum Entropy Algorithm and Soil Temperature as Auxiliary Data , 2016, PloS one.

[98]  William C Miller,et al.  Modeling a syphilis outbreak through space and time using the Bayesian maximum entropy approach. , 2006, Annals of epidemiology.

[99]  C. Vörösmarty,et al.  Anthropogenic Disturbance of the Terrestrial Water Cycle , 2000 .

[100]  A. Brierley,et al.  A QuAntified BAyesiAn MAxiMuM entropy estiMAte of AntArctic Krill ABundAnce Across the scotiA seA And in sMAll-scAle MAnAgeMent units froM the ccAMlr-2000 survey , 2006 .

[101]  Dominique Fasbender,et al.  Bayesian data fusion in a spatial prediction context: a general formulation , 2007 .

[102]  王会利,et al.  Updating digital soil maps with new data:a case study of soil organic matter in Jiangsu, China , 2015 .

[103]  Hwa-Lung Yu,et al.  A GIS tool for spatiotemporal modeling under a knowledge synthesis framework , 2016, Stochastic Environmental Research and Risk Assessment.

[104]  M. Nasseri,et al.  Improving Bayesian maximum entropy and ordinary Kriging methods for estimating precipitations in a large watershed: a new cluster-based approach , 2014 .

[105]  M. Biondi,et al.  Maximum entropy modeling of geographic distributions of the flea beetle species endemic in Italy (Coleoptera: Chrysomelidae: Galerucinae: Alticini) , 2015 .

[106]  George M. Ewing Calculus of Variations with Applications , 2016 .

[107]  M. McCarthy,et al.  Profiting from prior information in Bayesian analyses of ecological data , 2005 .

[108]  Marc L Serre,et al.  Modern space/time geostatistics using river distances: data integration of turbidity and E. coli measurements to assess fecal contamination along the Raritan River in New Jersey. , 2009, Environmental science & technology.

[109]  K. Messier,et al.  Arsenic in North Carolina: public health implications. , 2012, Environment international.

[110]  Kerrie Mengersen,et al.  Elicitation by design in ecology: using expert opinion to inform priors for Bayesian statistical models. , 2009, Ecology.

[111]  G. Christakos,et al.  Spatiotemporal Interpolation of Rainfall by Combining BME Theory and Satellite Rainfall Estimates , 2015 .

[112]  Sheng Ma,et al.  Merging Satellite Ocean Color Data With Bayesian Maximum Entropy Method , 2015, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[113]  Cass T. Miller,et al.  A BME solution of the inverse problem for saturated groundwater flow , 2003 .

[114]  Joseph N. LoBuglio,et al.  Cost‐effective water quality assessment through the integration of monitoring data and modeling results , 2007 .

[115]  Kara M. Kockelman,et al.  The propagation of uncertainty through travel demand models: An exploratory analysis , 2000 .

[116]  P. Ciais,et al.  The impacts of climate change on water resources and agriculture in China , 2010, Nature.

[117]  George Christakos,et al.  BME Estimation of Residential Exposure to Ambient PM10 and Ozone at Multiple Time Scales , 2008, Environmental health perspectives.

[118]  Yu Hwa-Lung,et al.  Retrospective prediction of intraurban spatiotemporal distribution of PM2.5 in Taipei , 2010 .

[119]  Tai-Yi Yu Characterization of ambient PM2.5 concentrations , 2010 .

[120]  R. Reese Geostatistics for Environmental Scientists , 2001 .

[121]  B. Zahraie,et al.  Evaluation of spatial and spatiotemporal estimation methods in simulation of precipitation variability patterns , 2013, Theoretical and Applied Climatology.

[122]  Patrick Bogaert,et al.  Spatiotemporal modelling of ozone distribution in the State of California , 2009 .