Persistent Homology of Geospatial Data: A Case Study with Voting

A crucial step in the analysis of persistent homology is the transformation of data into an appropriate topological object (in our case, a simplicial complex). Modern packages for persistent homology often construct Vietoris--Rips or other distance-based simplicial complexes on point clouds because they are relatively easy to compute. We investigate alternative methods of constructing these complexes and the effects of making associated choices during simplicial-complex construction on the output of persistent-homology algorithms. We present two new methods for constructing simplicial complexes from two-dimensional geospatial data (such as maps). We apply these methods to a California precinct-level voting data set, demonstrating that our new constructions can capture geometric characteristics that are missed by distance-based constructions. Our new constructions can thus yield more interpretable persistence modules and barcodes for geospatial data. In particular, they are able to distinguish short-persistence features that occur only for a narrow range of distance scales (e.g., voting behaviors in densely populated cities) from short-persistence noise by incorporating information about other spatial relationships between precincts.

[1]  R. Ghrist Barcodes: The persistent topology of data , 2007 .

[2]  Afra Zomorodian,et al.  Fast construction of the Vietoris-Rips complex , 2010, Comput. Graph..

[3]  Isabel K. Darcy,et al.  Tracing patterns and shapes in remittance and migration networks via persistent homology , 2018, EPJ Data Science.

[4]  Herbert Edelsbrunner,et al.  Computational Topology - an Introduction , 2009 .

[5]  Ulrich Bauer,et al.  PHAT - Persistent Homology Algorithms Toolbox , 2014, ICMS.

[6]  Heather A. Harrington,et al.  Persistent homology of time-dependent functional networks constructed from coupled time series. , 2016, Chaos.

[7]  J. Marron,et al.  Persistent Homology Analysis of Brain Artery Trees. , 2014, The annals of applied statistics.

[8]  Derek Lo,et al.  Modeling the spread of the Zika virus using topological data analysis , 2016, PloS one.

[9]  R. Ho Algebraic Topology , 2022 .

[10]  Afra Zomorodian,et al.  Computing Persistent Homology , 2004, SCG '04.

[11]  Henry Markram,et al.  Quantifying topological invariants of neuronal morphologies , 2016, ArXiv.

[12]  Ronald Fedkiw,et al.  A review of level-set methods and some recent applications , 2018, J. Comput. Phys..

[13]  S. Mukherjee,et al.  Topological Consistency via Kernel Estimation , 2014, 1407.5272.

[14]  Kelin Xia,et al.  Persistent homology analysis of protein structure, flexibility, and folding , 2014, International journal for numerical methods in biomedical engineering.

[15]  Konstantin Mischaikow,et al.  Topological data analysis of contagion maps for examining spreading processes on networks , 2014, Nature Communications.

[16]  Yuri Dabaghian,et al.  Reconceiving the hippocampal map as a topological template , 2014, eLife.

[17]  Hong Yan,et al.  Alpha shape and Delaunay triangulation in studies of protein-related interactions , 2014, Briefings Bioinform..

[18]  Kevin J. Emmett,et al.  Multiscale Topology of Chromatin Folding , 2015, BICT.

[19]  Morten L. Kringelbach,et al.  Insights into Brain Architectures from the Homological Scaffolds of Functional Connectivity Networks , 2016, Front. Syst. Neurosci..

[20]  Ronald Fedkiw,et al.  Level set methods and dynamic implicit surfaces , 2002, Applied mathematical sciences.

[21]  Mason A. Porter,et al.  A roadmap for the computation of persistent homology , 2015, EPJ Data Science.

[22]  Henry Markram,et al.  Cliques of Neurons Bound into Cavities Provide a Missing Link between Structure and Function , 2016, Front. Comput. Neurosci..

[23]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[24]  Heather A Harrington,et al.  Topological data analysis of continuum percolation with disks. , 2018, Physical review. E.

[25]  Vin de Silva,et al.  On the Local Behavior of Spaces of Natural Images , 2007, International Journal of Computer Vision.

[26]  Ulrich Bauer,et al.  Statistical Topological Data Analysis - A Kernel Perspective , 2015, NIPS.

[27]  Michal Adamaszek,et al.  The Vietoris-Rips complexes of a circle , 2015, ArXiv.

[28]  Michael Kerber,et al.  Approximate Čech Complex in Low and High Dimensions , 2013, ISAAC.

[29]  Xiaojin Zhu,et al.  Stochastic Multiresolution Persistent Homology Kernel , 2016, IJCAI.

[30]  Peter Bubenik,et al.  Statistical topological data analysis using persistence landscapes , 2012, J. Mach. Learn. Res..

[31]  Andrew J. Blumberg,et al.  Fast Estimation of Recombination Rates Using Topological Data Analysis , 2018, Genetics.

[32]  M. Gameiro,et al.  A topological measurement of protein compressibility , 2014, Japan Journal of Industrial and Applied Mathematics.

[33]  Justin Solomon,et al.  Gerrymandering and Compactness: Implementation Flexibility and Abuse , 2018, Political Analysis.

[34]  David G. Kirkpatrick,et al.  On the shape of a set of points in the plane , 1983, IEEE Trans. Inf. Theory.

[35]  Lori Ziegelmeier,et al.  Mind the Gap: A Study in Global Development through Persistent Homology , 2017, ArXiv.

[36]  Mason A. Porter,et al.  Network analysis of particles and grains , 2017, J. Complex Networks.

[37]  Henry Adams,et al.  Persistence Images: A Stable Vector Representation of Persistent Homology , 2015, J. Mach. Learn. Res..

[38]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[39]  Mason A. Porter,et al.  The Topological "Shape" of Brexit , 2016, ArXiv.

[40]  Danielle S. Bassett,et al.  Two’s company, three (or more) is a simplex , 2016, Journal of Computational Neuroscience.

[41]  Carina Curto,et al.  What can topology tell us about the neural code , 2016, 1605.01905.

[42]  Dragan D. Nikolic,et al.  Using persistent homology and dynamical distances to analyze protein binding , 2014, Statistical applications in genetics and molecular biology.

[43]  C. Fred Bergsten Two's Company , 2009 .

[44]  Moon Duchin,et al.  Discrete geometry for electoral geography , 2018, 1808.05860.

[45]  André Panisson,et al.  Unveiling patterns of international communities in a global city using mobile phone data , 2015, EPJ Data Science.

[46]  Jaejun Yoo,et al.  Topological persistence vineyard for dynamic functional brain connectivity during resting and gaming stages , 2016, Journal of Neuroscience Methods.

[47]  Ulrich Bauer,et al.  A stable multi-scale kernel for topological machine learning , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[48]  L. Vietoris Über den höheren Zusammenhang kompakter Räume und eine Klasse von zusammenhangstreuen Abbildungen , 1927 .