Pyrolysis Modeling, Thermal Decomposition, AndTransport Processes In Combustible Solids

In a fi re, combustion occurs when gaseous fuel liberated from solid materials mixes with the surrounding oxidizer and reacts with oxygen, releasing heat and combustion products. This heat in turn supports further gasifi cation of the fuel. Therefore, condensed-phase processes are one of the primary factors controlling ignition, burning, and fl ame spread in fi res. This chapter reviews several aspects of condensed-phase processes that affect a material’s overall reaction to fi re, with an emphasis on modeling. The various pyrolysis modeling strategies that have been used to simulate the burning of solids are summarized. An overview of decomposition kinetics and thermodynamics in the solid phase is given due to their importance in the burning of solids. Conduction, radiation, convection, and momentum transfer within combustible solids are reviewed. Wherever possible, values of material properties and pyrolysis coeffi cients needed for modeling are given for different materials.

[1]  Michael A. Delichatsios,et al.  Material Pyrolysis Properties, Part I: An Integral Model for One-Dimensional Transient Pyrolysis of Charring and Non-Charring Materials , 1993 .

[2]  K. McGrattan,et al.  Modeling Solid Sample Buming , 2005 .

[3]  Murlidhar Gupta,et al.  Specific heat and thermal conductivity of softwood bark and softwood char particles , 2003 .

[4]  Henrik Thunman,et al.  Thermal conductivity of wood - models for different stages of combustion , 2002 .

[5]  Hsiang-Cheng Kung,et al.  On the heat of reaction in wood pyrolysis , 1973 .

[6]  G. W. H. Silcock,et al.  Effect of melting behaviour on upward flame spread of thermoplastics , 1997 .

[7]  Charles E. Anderson,et al.  Thermal Conductivity of Intumescent Chars , 1988 .

[8]  Sophie Duquesne,et al.  Modeling of Heat Transfer of a Polypropylene-Based Intumescent System during Combustion , 1999 .

[9]  Edward J. Kansa,et al.  Mathematical model of wood pyrolysis including internal forced convection , 1977 .

[10]  C. Blasi,et al.  Mathematical model for the nonsteady decomposition of intumescent coatings , 2001 .

[11]  Michel Quintard,et al.  A local thermal non-equilibrium model for two-phase flows with phase-change in porous media , 2004 .

[12]  B. B. Krieger,et al.  Modelling and experimental verification of physical and chemical processes during pyrolysis of a large biomass particle , 1985 .

[13]  Thomas Steinhaus Evaluation of the Thermophysical Properties of Poly(MethylMethacrylate): A Reference Material for the Development of a flammability Test for Micro-Gravity Environments , 1999 .

[14]  Björn Karlsson,et al.  Models for calculating flame spread on wall lining materials and the resulting heat release rate in a room , 1994 .

[15]  Colomba Di Blasi,et al.  Modeling the effects of high radiative heat fluxes on intumescent material decomposition , 2004 .

[16]  D. Drysdale,et al.  Flammability of plastics I. Ignition temperatures , 1987 .

[17]  Daniel M. Madrzykowski,et al.  Report of the Technical Investigation of The Station Nightclub Fire (NIST NCSTAR 2) ***DRAFT for Public Comments*** | NIST , 2005 .

[18]  Behdad Moghtaderi,et al.  Computational fluid dynamics modelling of wood combustion , 1996 .

[19]  K. McGrattan,et al.  LARGE EDDY SIMULATION OF WOOD COMBUSTION , 2001 .

[20]  P. Simon,et al.  IISCONVERSIONAL METHODS fundamentals, meaning and application , 2004 .

[21]  Robert F. Chaiken,et al.  Charring pyrolysis of wood in fires by laser simulation , 1977 .

[22]  A. TenWolde,et al.  Thermal properties of wood and wood panel products for use in buildings , 1988 .

[23]  B. T. Rhodes,et al.  Burning rate and flame heat flux for PMMA in a cone calorimeter , 1996 .

[24]  Arvind Atreya,et al.  A Simplified Model for the Pyrolysis of Charring Materials , 1987 .

[25]  Harold E. Nelson,et al.  Reconstruction of the Fires in the World Trade Center Towers. Federal Building and Fire Safety Investigation of the World Trade Center Disaster (NIST NCSTAR 1-5) | NIST , 2005 .

[26]  S. Dakka TG/DTA/MS of Poly(Methyl Methacrylate), The Effect of Particle Size , 2003 .

[27]  Seungdo Kim,et al.  Using peak properties of a DTG curve to estimate the kinetic parameters of the pyrolysis reaction: application to high density polyethylene , 2004 .

[28]  Kevin B. McGrattan,et al.  Fire dynamics simulator (ver-sion 3) technical reference guide , 2001 .

[29]  Forman A. Williams,et al.  A theory of laminar flame spread over flat surfaces of solid combustibles , 1977 .

[30]  Raymond A. Young Wood and Wood Products , 1992 .

[31]  Bertil Fredlund,et al.  Modelling of heat and mass transfer in wood structures during fire , 1993 .

[32]  John E. J. Staggs,et al.  A discussion of modelling idealised ablative materials with particular reference to fire testing , 1997 .

[33]  Kathryn M. Butler A Mixed Layer Pyrolysis Model For Polypropylene , 2000 .

[34]  A. Galgano,et al.  Modeling Wood Degradation by the Unreacted-Core-Shrinking Approximation , 2003 .

[35]  J. B. Henderson,et al.  A Mathematical Model to Predict the Thermal Response of Decomposing, Expanding Polymer Composites , 1987 .

[36]  Sergey Vyazovkin,et al.  Kinetic study of stabilizing effect of oxygen on thermal degradation of poly(methyl methacrylate) , 1999 .

[37]  Michael Spearpoint,et al.  Predicting the piloted ignition of wood in the cone calorimeter using an integral model — effect of species, grain orientation and heat flux , 2001 .

[38]  Fire -safe polymers and polymer composites , 2003 .

[39]  Edwin R. Galea,et al.  The numerical simulation of the noncharring pyrolysis process and fire development within a compartment , 1999 .

[40]  J. A. Esfahani Oxygen-sensitive thermal degradationof pmma: A numerical study , 2002 .

[41]  Thermo-oxidative decomposition of polyvinyl chloride , 2005 .

[42]  Behdad Moghtaderi,et al.  The Effect of Char Oxidation on the Flaming Combustion Characteristics of Wood Materials , 1996 .

[43]  Jan Vierendeels,et al.  Critical evaluation of an integral model for the pyrolysis of charring materials , 2005 .

[44]  C. Tien,et al.  Radiation induced ignition of solid fuels , 1990 .

[45]  Fuchen Jia,et al.  The numerical simulation of enclosure fires using a Cfd fire field model coupled with a pyrolysis based solid fuel combustion submodel—a first approximation , 1998 .

[46]  Jean-Louis Delfau,et al.  Mass Loss Rate Measurements on Solid Materials Under Radiative Heating , 1984 .

[47]  Lin Tang,et al.  Implementing multi-step chemical kinetics models in opposed-flow flame spread over cellulose and a comparison to single-step chemistry , 1999 .

[48]  Jan Vierendeels,et al.  Extension and evaluation of the integral model for transient pyrolysis of charring materials , 2005 .

[49]  Ravindra K. Agarwal,et al.  On the use of the arrhenius equation to describe cellulose and wood pyrolysis , 1985 .

[50]  A. Galgano,et al.  Modeling the propagation of drying and decomposition fronts in wood , 2004 .

[51]  B. Rånby,et al.  Plastics and Rubber , 1996 .

[52]  Non-equilibrium theories for macroscale heat transfer: ablative composite layer systems , 2004 .

[53]  B. Wunderlich,et al.  Heat Capacity and Other Thermodynamic Properties of Linear Macromolecules. VII. Other Carbon Backbone Polymers , 1983 .

[54]  Vahid Motevalli,et al.  Material Pyrolysis Properties, Part II: Methodology for the Derivation of Pyrolysis Properties for Charring Materials , 1995 .

[55]  J. Welker,et al.  The piloted ignition of wood by thermal radiation , 1971 .

[56]  Brian Y. Lattimer,et al.  Heat Release Rates of Fully-developed Fires in Railcars , 2005 .

[57]  John E. J. Staggs The heat of gasification of polymers , 2004 .

[58]  Guillermo Rein,et al.  The application of a genetic algorithm to estimate material properties for fire modeling from bench-scale fire test data , 2006 .

[59]  Jean-Louis Delfau,et al.  Experimental and Numerical Study of the Thermal Degradation of PMMA , 1987 .

[60]  P. Simon Single-step kinetics approximation employing non-Arrhenius temperature functions , 2005 .

[61]  E. Bar-Ziv,et al.  Heat transfer within highly porous chars: a review , 1999 .

[62]  George I Makhatadze,et al.  Differential Scanning Calorimetry , 2009 .

[63]  Jörgen Carlsson,et al.  Computational strategies in flame-spread modelling involving wooden surfaces -An evaluation study , 2003 .

[64]  A. Fernandez-Pello,et al.  Application of genetic algorithms and thermogravimetry to determine the kinetics of polyurethane foam in smoldering combustion , 2006 .

[65]  B. Wunderlich,et al.  Heat Capacity and Other Thermodynamic Properties of Linear Macromolecules. IX. Final Group of Aromatic and Inorganic Polymers , 1983 .

[66]  A. Fernandez-Pello,et al.  Convection Effects on the Endothermic Gasification and Piloted Ignition of a Radiatively Heated Combustible Solid , 2000 .

[67]  A. D. Bicknell,et al.  Studies on the Effect of Atmospheric Oxygen Content on the Thermal Resistance of Intumescent, Fire-Retardant Coatings , 2005 .

[68]  Behdad Moghtaderi,et al.  The state‐of‐the‐art in pyrolysis modelling of lignocellulosic solid fuels , 2006 .

[69]  P. A. Rubini,et al.  Field Modelling Of Non-charring Flame Spread , 2000 .

[70]  Frederick W. Williams,et al.  Evaluation of Intumescent Coatings for Shipboard Fire Protection , 2003 .

[71]  Behdad Moghtaderi,et al.  An Integral Model for the Transient Pyrolysis of Solid Materials , 1997 .

[72]  Björn Karlsson,et al.  Using Results from Performance-Based Test Methods for Material Flammability in Fire Safety Engineering Design , 2002 .

[73]  B. Wunderlich,et al.  Heat Capacity and Other Thermodynamic Properties of Linear Macromolecules. IV. Polypropylene , 1981 .

[74]  Jan Vierendeels,et al.  A moving grid model for the pyrolysis of charring materials , 2002 .

[75]  B. M. Suleiman,et al.  Thermal conductivity and diffusivity of wood , 1999, Wood Science and Technology.

[76]  B. H. Chiam,et al.  Numerical Simulation of a Metro Train Fire , 2005 .

[77]  Masahiro Nakada,et al.  Kinetics of thermal degradation of poly(methyl methacrylate) studied with the assistance of the fractional conversion at the maximum reaction rate , 2004 .

[78]  J. Pettersson,et al.  Surface temperature of decomposing construction materials studied by laser‐induced phosphorescence , 2005 .

[79]  M. Kaviany Principles of heat transfer in porous media , 1991 .

[80]  Gregory T. Linteris,et al.  Progress Report on Numerical Modeling of Experimental Polymer Melt Flow Behavior. , 2004 .

[81]  K. W. Ragland,et al.  Properties of wood for combustion analysis. , 1991 .

[82]  Charles E. Anderson,et al.  A model for intumescent paints , 1986 .

[83]  E Fermi Diffusion flames upwardly propagating over PMMA:theory,experiment and numerical modeling , 2005 .

[84]  M. Gao,et al.  Thermal Degradation of Wood Treated with Amino Resins and Amino Resins Modified with Phosphate in Nitrogen , 2004 .

[85]  Colomba Di Blasi,et al.  Modeling and simulation of combustion processes of charring and non-charring solid fuels , 1993 .

[86]  J. Staggs Heat and mass transport in developing chars , 2003 .

[87]  John E. J. Staggs,et al.  Estimating the thermal conductivity of chars and porous residues using thermal resistor networks , 2002 .

[88]  J. Kuipers,et al.  Kinetics of the low-temperature pyrolysis of polyethene, polypropene and polystyrene modeling, experimental determination and comparison with literature models and data , 1997 .

[89]  James G. Quintiere,et al.  Material fire properties and predictions for thermoplastics , 1996 .

[90]  W. Fan,et al.  The pyrolysis and ignition of charring materials under an external heat flux , 2003 .

[91]  Ellen G. Brehob,et al.  Numerical model of upward flame spread on practical wall materials , 2001 .

[92]  Kathryn M. Butler,et al.  Thermal and flammability properties of polypropylene/carbon nanotube nanocomposites , 2004 .

[93]  A. F. Roberts The heat of reaction during the pyrolysis of wood , 1971 .

[94]  Gennaro Russo,et al.  Numerical model of ignition processes of polymeric materials including gas-phase absorption of radiation , 1991 .

[95]  R. Yuen,et al.  A Numerical Model for Pilot Ignition of PMMA in a Cone Calorimeter , 1997 .

[96]  J. Ris Fire radiation—A review , 1979 .

[97]  José L. Figueiredo,et al.  A model for pyrolysis of wet wood , 1989 .

[98]  V. L. Strakhov,et al.  Mathematical Simulation of Thermophysical and Thermochemical Processes During Combustion of Intumescent Fire–Protective Coatings , 2001 .

[99]  J. Staggs Modelling thermal degradation of polymers using single-step first-order kinetics , 1999 .

[100]  C. Blasi The state of the art of transport models for charring solid degradation , 2000 .

[101]  P. Salatino,et al.  Oxidative pyrolysis of solid fuels , 2004 .

[102]  Y. Zhou,et al.  An enthalpy-temperature hybrid method for solving phase-change problems and its application to polymer pyrolysis and ignition , 2000 .

[103]  Charles E. Anderson,et al.  A thermodynamic heat transfer model for intumescent systems , 1984 .

[104]  N. Imaishi,et al.  Measurements of the Thermal Conductivity and Thermal Diffusivity of Polymer Melts with the Short-Hot-Wire Method , 2001 .

[105]  J. R. Hallman Ignition characteristics of plastics and rubber , 1971 .

[106]  Jun Zhang,et al.  Effects of Surface Flame Spread of Plywood Lining on Enclosure Fire in a Modified ISO Room , 2003 .

[107]  José L. Figueiredo,et al.  Pyrolysis kinetics of lignocellulosic materials—three independent reactions model , 1999 .

[108]  Ashok T. Modak,et al.  Plastic pool fires , 1977 .

[109]  L. Hunter,et al.  Endothermic gasification of a solid by thermal radiation absorbed in depth , 1984 .

[110]  B. Wunderlich,et al.  Heat Capacity and Other Thermodynamic Properties of Linear Macromolecules. VIII. Polyesters and Polyamides , 1983 .

[111]  Takeyoshi Tanaka,et al.  A Burning Model for Charring Materials and Its Application to the Compartment Fire Development , 2004 .

[112]  S. Yi,et al.  A Kinetic Analysis of the Thermal-Oxidative Decomposition of Polypropylene , 2000 .

[113]  Takashi Kashiwagi,et al.  The Effect Of Sample Size On The Heat Release Rate Of Charring Materials , 1997 .

[114]  Y. Chen,et al.  Asymptotic, approximate, and numerical solutions for the heatup and pyrolysis of materials including reradiation losses , 1993 .

[115]  Michel Ferriol,et al.  Thermal degradation of poly(methyl methacrylate) (PMMA): modelling of DTG and TG curves , 2003 .

[116]  John E. J. Staggs A simple model of polymer pyrolysis including transport of volatiles , 2000 .

[117]  Hsiang-Cheng Kung,et al.  A mathematical model of wood pyrolysis , 1972 .

[118]  Marc Janssens,et al.  Piloted ignition of wood: A review , 1991 .

[119]  Brian Y. Lattimer,et al.  Properties of composite materials for thermal analysis involving fires , 2006 .

[120]  J. Kuo,et al.  Pyrolysis and ignition of single wooden spheres heated in high-temperature streams of air , 2005 .

[121]  Ofodike A. Ezekoye,et al.  Kinetic and Fuel Property Effects on Forward Smoldering Combustion , 2000 .

[122]  Fan-bill B. Cheung,et al.  Theoretical Modeling of Intumescent Fire-Retardant Materials , 1998 .

[123]  S. Thynell,et al.  In-Depth Absorption of Externally Incident Radiation in Nongray Media , 1995 .

[124]  T. Kashiwagi,et al.  Transient Modeling of Thermal Degradation in Non-Charring Solids , 1999 .

[125]  B. Porterie,et al.  A BLOCKED-OFF-REGION STRATEGY TO COMPUTE FIRE-SPREAD SCENARIOS INVOLVING INTERNAL FLAMMABLE TARGETS , 2005 .