A 3 D DISCRETE MODEL OF THE DIAPHRAGM AND HUMAN TRUNK ∗

In this paper, a 3D discrete model is presented to model the movements of the trunk during breathing. In this model, objects are represented by physical particles on their contours. A simple notion of force generated by a linear actuator allows the model to create forces on each particle by way of a geometrical attractor. Tissue elasticity and contractility are modeled by local shape memory and muscular fibers attractors. A specific dynamic MRI study was used to build a simple trunk model comprised of by three compartments: lungs, diaphragm and abdomen. This model was registered on the real geometry. Simulation results were compared qualitatively as well as quantitatively to the experimental data, in terms of volume and geometry. A good correlation was obtained between the model and the real data. Thanks to this model, pathology such as hemidiaphragm paralysis can also be simulated. Résumé. Dans cet article nous présentons un modèle discret 3D permettant de modéliser les mouvements du tronc pendant la respiration. Les objets du modèle sont représentés par des particules physiques sur leurs contours. Une notion simple de force induite par des actuateurs linéaires permet de génerer des forces au niveau des particules en utilisant un attracteur géométrique. Les propriétés élastiques et contractiles d’un tissu sont ainsi modélisées par des attracteurs de mémoire de forme locale et de fibre musculaire. À partir d’une étude spécifique en IRM dynamique, nous avons construit un modèle de tronc simplifié comprenant trois compartiments : les poumons, le diaphragme et l’abdomen. Ce modèle est recalé sur la géométrie réelle. Nous confrontons les simulations obtenues aussi bien qualitativement que quantitativement, en terme de variation de volume et de géométrie. Une bonne correlation est obtenue entre le modèle et les données réelles. Grâce à ce modèle nous montrons enfin que l’on peut simuler la paralysie hémidiaphragmatique.

[1]  Dinesh K. Pai,et al.  Multiresolution green's function methods for interactive simulation of large-scale elastostatic objects , 2003, TOGS.

[2]  Cagatay Basdogan,et al.  A robotic indenter for minimally invasive measurement and characterization of soft tissue response , 2007, Medical Image Anal..

[3]  Pierre Baconnier,et al.  Physically‐Based Deformations Constrained in Displacements and Volume , 1996, Comput. Graph. Forum.

[4]  Doug L. James,et al.  Real-Time subspace integration for St. Venant-Kirchhoff deformable models , 2005, ACM Trans. Graph..

[5]  Alessandro Nava,et al.  In vivo mechanical characterization of human liver , 2008, Medical Image Anal..

[6]  Herve Delingette,et al.  Real-Time Elastic Deformations of Soft Tissues for Surgery Simulation , 1999, IEEE Trans. Vis. Comput. Graph..

[7]  Ronald Fedkiw,et al.  Finite volume methods for the simulation of skeletal muscle , 2003, SCA '03.

[8]  M. Sato [Mechanical properties of living tissues]. , 1986, Iyo denshi to seitai kogaku. Japanese journal of medical electronics and biological engineering.

[9]  M Paiva,et al.  Three-dimensional reconstruction of the in vivo human diaphragm shape at different lung volumes. , 1994, Journal of applied physiology.

[10]  M. Estenne,et al.  Three-dimensional reconstruction of human diaphragm with the use of spiral computed tomography. , 1997, Journal of applied physiology.

[11]  P. Grenier,et al.  Diaphragm and chest wall: assessment of the inspiratory pump with MR imaging-preliminary observations. , 2000, Radiology.

[12]  P. Baconnier,et al.  Dynamic echo-planar MR imaging of the diaphragm for a 3D dynamic analysis , 2005, European Radiology.

[13]  W A Whitelaw,et al.  Shape and size of the human diaphragm in vivo. , 1987, Journal of applied physiology.

[14]  SimulationHervé Delingetteinria Towards Realistic Soft Tissue Modeling in Medical , 1997 .

[15]  Matthieu Chabanas,et al.  Physical Model Language: Towards a Unified Representation for Continuous and Discrete Models , 2004, ISMS.

[16]  Andrei Constantinescu,et al.  Mechanical model of the inspiratory pump. , 2002, Journal of biomechanics.

[17]  J. Rodarte,et al.  Effects of transverse fiber stiffness and central tendon on displacement and shape of a simple diaphragm model. , 1997, Journal of applied physiology.

[18]  Pheng-Ann Heng,et al.  A hybrid condensed finite element model with GPU acceleration for interactive 3D soft tissue cutting , 2004, Comput. Animat. Virtual Worlds.

[19]  Pierre Baconnier,et al.  Physically-based model for simulating the human trunk respiration movements , 1997, CVRMed.

[20]  Pheng-Ann Heng,et al.  A hybrid condensed finite element model with GPU acceleration for interactive 3D soft tissue cutting: Research Articles , 2004 .

[21]  H Delingette,et al.  Efficient linear elastic models of soft tissues for real-time surgery simulation. , 1999, Studies in health technology and informatics.

[22]  M Paiva,et al.  Mechanical implications of in vivo human diaphragm shape. , 1992, Journal of applied physiology.

[23]  Mathieu Desbrun,et al.  Dynamic real-time deformations using space & time adaptive sampling , 2001, SIGGRAPH.