Spatial sampling design under the infill asymptotic framework

We study optimal sample designs for prediction with estimated parameters. Recent advances in the infill asymptotic theory provide a deeper understanding of the finite sample behavior of prediction and estimation. By incorporating these known asymptotic results, we modify some existing design criteria for estimation of covariance function and best linear unbiased prediction. These modified criteria could significantly reduce the computation time necessary for finding an optimal design. We illustrate our approach through both a real experiment in agriculture and simulation. Copyright © 2005 John Wiley & Sons, Ltd.

[1]  Douglas P. Wiens,et al.  Robustness in spatial studies I: minimax prediction , 2005 .

[2]  Donald Geman,et al.  Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images , 1984 .

[3]  T. Sweeting Uniform Asymptotic Normality of the Maximum Likelihood Estimator , 1980 .

[4]  Max D. Morris,et al.  On counting the number of data pairs for semivariogram estimation , 1991 .

[5]  Michael L. Stein,et al.  Interpolation of spatial data , 1999 .

[6]  P. Switzer,et al.  BAYESIAN NETWORK DESIGNS FOR FIELDS WITH UNKNOWN VARIANCE FUNCTION , 2002 .

[7]  R. Lark Optimized spatial sampling of soil for estimation of the variogram by maximum likelihood , 2002 .

[8]  Anthony N. Pettitt,et al.  Sampling Designs for Estimating Spatial Variance Components , 1993 .

[9]  Zhengyuan Zhu,et al.  Spatial sampling design for parameter estimation of the covariance function , 2005 .

[10]  N. Cressie,et al.  Mean squared prediction error in the spatial linear model with estimated covariance parameters , 1992 .

[11]  K. Chaloner,et al.  Bayesian Experimental Design: A Review , 1995 .

[12]  Hao Zhang Inconsistent Estimation and Asymptotically Equal Interpolations in Model-Based Geostatistics , 2004 .

[13]  N. Cressie,et al.  Robust estimation of the variogram: I , 1980 .

[14]  D. Wiens Robustness in spatial studies II: minimax design , 2005 .

[15]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[16]  Alfred Stein,et al.  Constrained Optimization of Spatial Sampling using Continuous Simulated Annealing , 1998 .

[17]  Evangelos A. Yfantis,et al.  Efficiency of kriging estimation for square, triangular, and hexagonal grids , 1987 .

[18]  A. Warrick,et al.  Optimization of Sampling Locations for Variogram Calculations , 1987 .

[19]  David Russo,et al.  Design of an Optimal Sampling Network for Estimating the Variogram , 1984 .

[20]  K. Mardia,et al.  Maximum likelihood estimation of models for residual covariance in spatial regression , 1984 .

[21]  W. G. Müller,et al.  Optimal designs for variogram estimation , 1999 .

[22]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[23]  Roger Woodard,et al.  Interpolation of Spatial Data: Some Theory for Kriging , 1999, Technometrics.

[24]  D. Zimmerman,et al.  Towards reconciling two asymptotic frameworks in spatial statistics , 2005 .

[25]  Maurice Queyranne,et al.  An Exact Algorithm for Maximum Entropy Sampling , 1995, Oper. Res..

[26]  J. Andrew Royle,et al.  Exchange algorithms for constructing large spatial designs , 2002 .

[27]  Daniel R. Jeske,et al.  Mean Squared Error of Estimation or Prediction under a General Linear Model , 1992 .

[28]  Peter J. Diggle,et al.  An Introduction to Model-Based Geostatistics , 2003 .

[29]  Dale L. Zimmerman,et al.  Optimal network design for spatial prediction, covariance parameter estimation, and empirical prediction , 2006 .

[30]  Anthony C. Atkinson,et al.  Optimum Experimental Designs , 1992 .

[31]  Alex B. McBratney,et al.  The design of optimal sampling schemes for local estimation and mapping of of regionalized variables—I: Theory and method , 1981 .

[32]  W. Welch,et al.  Fisher information and maximum‐likelihood estimation of covariance parameters in Gaussian stochastic processes , 1998 .

[33]  D. Russo,et al.  Optimal spatial sampling design for the estimation of the variogram based on a least squares approach , 1999 .

[34]  J. R. Wallis,et al.  An Approach to Statistical Spatial-Temporal Modeling of Meteorological Fields , 1994 .