Dynamics of a high-Q vertical-cavity organic laser

We investigate the dynamics of the organic laser guest-host composite of tris-(8-hydroxy quinoline) aluminium and 4-(dicyanomethylene)-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran embedded in a high-Q (Q≈4500) double distributed Bragg reflector microcavity using subpicosecond up-conversion techniques. Lasing is observed at a threshold of 0.4nJ∕20μJcm−2 with a linewidth of 0.05 nm (resolution limit). We observe a strongly nonlinear intensity-dependent delay of the emitted radiation burst. All experimental results are successfully modeled by a set of nonlinear rate equations, emphasizing the importance of a feedback mechanism for lasing.

[1]  W. Brütting,et al.  Picosecond amplified spontaneous emission bursts from a molecularly doped organic semiconductor , 2002 .

[2]  Stephen R. Forrest,et al.  Prospects for electrically pumped organic lasers , 2002 .

[3]  S. Forrest,et al.  Temperature independent performance of organic semiconductor lasers , 1997 .

[4]  G. Kranzelbinder,et al.  Organic solid-state lasers , 2000 .

[5]  S. Kovalenko,et al.  Femtosecond hole-burning spectroscopy of the dye DCM in solution: the transition from the locally excited to a charge-transfer state , 1996 .

[6]  S. Forrest,et al.  Laser action in organic semiconductor waveguide and double-heterostructure devices , 1997, Nature.

[7]  L. Casperson,et al.  Principles of lasers , 1983, IEEE Journal of Quantum Electronics.

[8]  Zhenan Bao,et al.  Resonators and materials for organic lasers based on energy transfer , 1998 .

[9]  Wolfgang Kowalsky,et al.  Wavelength-tunable organic solid-state distributed-feedback laser , 2003 .

[10]  Kozlov,et al.  Transform-limited, narrow-linewidth lasing action in organic semiconductor microcavities , 1998, Science.

[11]  S. D. Gupta,et al.  Microcavity-induced modification of the dipole-dipole interaction , 1998 .

[12]  Mats Andersson,et al.  A polythiophene microcavity laser , 1998 .

[13]  Magnus Berggren,et al.  Stimulated emission and lasing in dye-doped organic thin films with Forster transfer , 1997 .

[14]  Andrew G. Glen,et al.  APPL , 2001 .

[15]  M. Demokan,et al.  An analysis of gain-switched semiconductor lasers generating pulse-code-modulated light with a high bit rate , 1984, IEEE Journal of Quantum Electronics.

[16]  J. Bowers,et al.  Picosecond dynamics of optical gain switching in vertical cavity emitting lasers , 1991 .

[17]  Stephen R. Forrest,et al.  Optically pumped blue organic semiconductor lasers , 1998 .

[18]  Zhiling Xu,et al.  In situ photoluminescence investigation of doped Alq , 2002 .

[19]  C. H. Chen,et al.  Electroluminescence of doped organic thin films , 1989 .

[20]  D. Basko,et al.  Electronic energy transfer in a microcavity , 2000 .

[21]  Stephen R. Forrest,et al.  Study of lasing action based on Förster energy transfer in optically pumped organic semiconductor thin films , 1998 .

[22]  R. H. Friend,et al.  Lasing from conjugated-polymer microcavities , 1996, Nature.