Inverse Finite Element Characterization of Nonlinear Hyperelastic Membranes

It is advantageous in mechanics to identify experiments that correspond to tractable boundary value problems-this facilitates data reduction and interpretation. Increasingly more situations are arising, however, wherein experimentalists cannot dictate the geometry or applied loads during testing. Inverse finite element methods are, therefore, becoming essential tools for calculating material parameters. In this paper, we present numerical and experimental results that show that one such inverse finite element method is very useful in characterizing the mechanical behavior of neo-Hookean (rubber) membranes subjected to axisymmetric and nonaxisymmetric finite inflations.

[1]  E. H. Twizell,et al.  Non-linear optimization of the material constants in Ogden's stress-deformation function for incompressinle isotropic elastic materials , 1983, The Journal of the Australian Mathematical Society. Series B. Applied Mathematics.

[2]  H. F. Nied,et al.  Three-dimensional finite element simulation of thermoforming , 1990 .

[3]  J W Melvin,et al.  Material identification of soft tissue using membrane inflation. , 1979, Journal of biomechanics.

[4]  R. Taylor,et al.  Theory and finite element formulation of rubberlike membrane shells using principal stretches , 1992 .

[5]  J M Charrier,et al.  Free and constrained inflation of elastic membranes in relation to thermoforming — axisymmetric problems , 1987 .

[6]  J. D. Humphrey,et al.  Identification of response functions from axisymmetric membrane inflation tests: Implications for biomechanics , 1994 .

[7]  J. Humphrey,et al.  Finite element analysis of nonlinear orthotropic hyperelastic membranes , 1996 .

[8]  J. D. Humphrey,et al.  A triplane video-based experimental system for studying axisymmetrically inflated biomembranes , 1995 .

[9]  Allen C. Pipkin Integration of an equation in membrane theory , 1968 .

[10]  J. Humphrey,et al.  Determination of a constitutive relation for passive myocardium: I. A new functional form. , 1990, Journal of biomechanical engineering.

[11]  Peter A. Engel,et al.  Finding the Constitutive Relation for a Specific Elastomer , 1993 .

[12]  R. Clough,et al.  Finite element applications in the characterization of elastic solids , 1971 .

[13]  N. G. Zamani,et al.  Status of the finite element method in the thermoforming process , 1989 .

[14]  L. Treloar,et al.  Strains in an Inflated Rubber Sheet, and the Mechanism of Bursting , 1944 .

[15]  J. Humphrey,et al.  A constitutive theory for biomembranes: application to epicardial mechanics. , 1992, Journal of biomechanical engineering.

[16]  Gao Yongxiang,et al.  The Study on Mechanical Parameters of Finite Deformation of Membranes , 1994 .

[17]  J. Humphrey,et al.  Determination of a constitutive relation for passive myocardium: II. Parameter estimation. , 1990, Journal of biomechanical engineering.

[18]  Miller Ce,et al.  Determination of Elastic Parameters For Human Fetal Membranes , 1979 .

[19]  J. E. Mark,et al.  Biaxial Extension Studies Using Inflation of Sheets of Unimodal Model Networks , 1990 .

[20]  J D Humphrey,et al.  Influence of size, shape and properties on the mechanics of axisymmetric saccular aneurysms. , 1996, Journal of biomechanics.

[21]  J. E. Adkins,et al.  Large Elastic Deformations , 1971 .

[22]  D. W. Saunders,et al.  Large elastic deformations of isotropic materials VII. Experiments on the deformation of rubber , 1951, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[23]  J W Melvin,et al.  Mechanical behavior of fetal dura mater under large deformation biaxial tension. , 1986, Journal of biomechanics.