Realization of qudits in coupled potential wells

Quantum computation strongly relies on the realization, manipulation, and control of qubits. A central method for realizing qubits is by creating a double-well potential system with a significant gap between the first two eigenvalues and the rest. In this work, we first revisit the theoretical grounds underlying the double-well qubit dynamics, then proceed to suggest novel extensions of these principles to a triple-well qutrit with periodic boundary conditions, followed by a general d-well analysis of qudits. These analyses are based on representations of the special unitary groups SU(d) which expose the systems’ symmetry and employ them for performing computations. We conclude with a few notes on coherence and scalability of d-well systems.

[1]  D. Browne,et al.  Qutrit magic state distillation , 2012, 1202.2326.

[2]  A. Niskanen,et al.  Decoherence of flux qubits due to 1/f flux noise. , 2006, Physical review letters.

[3]  WKB corrections to the energy splitting in double-well potentials , 1997, chao-dyn/9710001.

[4]  J. C. Retamal,et al.  Qutrit quantum computer with trapped ions , 2003 .

[5]  G Dearnaley,et al.  Electronic Structure and Properties of Solids: The Physics of the Chemical Bond , 1980 .

[6]  Realizing a stable magnetic double-well potential on an atom chip , 2005, physics/0503112.

[7]  Joydip Ghosh,et al.  Controlled-NOT logic gate for phase qubits based on conditional spectroscopy , 2011, Quantum Inf. Process..

[8]  Mozammel H. A. Khan,et al.  Multi-output Galois Field Sum of Products synthesis with new quantum cascades , 2003, 33rd International Symposium on Multiple-Valued Logic, 2003. Proceedings..

[9]  E. Lucero,et al.  Computing prime factors with a Josephson phase qubit quantum processor , 2012, Nature Physics.

[10]  S. Girvin,et al.  Observation of high coherence in Josephson junction qubits measured in a three-dimensional circuit QED architecture. , 2011, Physical review letters.

[11]  R. Schoelkopf,et al.  Superconducting Circuits for Quantum Information: An Outlook , 2013, Science.

[12]  E. Cohen,et al.  D-Wave and predecessors: From simulated to quantum annealing , 2014 .

[13]  John M. Martinis,et al.  Quantum process tomography of two-qubit controlled-Z and controlled-NOT gates using superconducting phase qubits , 2010, 1006.5084.

[14]  J. Gambetta,et al.  Superconducting qubit in a waveguide cavity with a coherence time approaching 0.1 ms , 2012, 1202.5533.

[15]  Arvind,et al.  A generalized Pancharatnam geometric phase formula for three-level quantum systems , 1996, quant-ph/9605042.

[16]  R. Barends,et al.  Coherent Josephson qubit suitable for scalable quantum integrated circuits. , 2013, Physical review letters.

[17]  D. DiVincenzo,et al.  Experimental demonstration of an oscillator stabilized Josephson flux qubit. , 2006, Physical review letters.

[18]  R. McDermott,et al.  Accurate Qubit Control with Single Flux Quantum Pulses , 2014, 1408.0390.

[19]  Ashok Muthukrishnan C. R. Stroud Quantum fast Fourier transform using multilevel atoms , 2001, quant-ph/0112017.

[20]  E. Cohen,et al.  Quantum annealing – foundations and frontiers , 2014, The European Physical Journal Special Topics.

[21]  G Torrioli,et al.  Deep-well ultrafast manipulation of a SQUID flux qubit , 2009 .

[22]  P. Bertet,et al.  Coherent dynamics of a flux qubit coupled to a harmonic oscillator , 2004, Nature.

[23]  Mark F. Bocko,et al.  Flux-based superconducting qubits for quantum computation , 2002 .

[24]  Carlton M. Caves,et al.  Qutrit Entanglement , 1999 .

[25]  J. Martinis,et al.  Superconducting Qubits: A Short Review , 2004, cond-mat/0411174.

[26]  Luigi Frunzio,et al.  Realization of three-qubit quantum error correction with superconducting circuits , 2011, Nature.

[27]  J. E. Mooij,et al.  Coherent Quantum Dynamics of a Superconducting Flux Qubit , 2003, Science.

[28]  Lev Davidovich Landau,et al.  CHAPTER I – THE BASIC CONCEPTS OF QUANTUM MECHANICS , 1977 .

[29]  S P Walborn,et al.  Quantum key distribution with higher-order alphabets using spatially encoded qudits. , 2006, Physical review letters.

[30]  D A Williams,et al.  Charge-qubit operation of an isolated double quantum dot. , 2005, Physical review letters.

[31]  G. Milburn,et al.  Qudit Entanglement , 2000, quant-ph/0001075.

[32]  John M. Martinis,et al.  Course 13 Superconducting qubits and the physics of Josephson junctions , 2004 .

[33]  A. D. Greentree,et al.  Implementation of controlled multi-qudit operations for a solid-state quantum computer based on charge qudits , 2003 .

[34]  D. Browne,et al.  Magic-State Distillation in All Prime Dimensions Using Quantum Reed-Muller Codes , 2012, 1205.3104.

[35]  Katarzyna Radecka,et al.  Scaling and Better Approximating Quantum Fourier Transform by Higher Radices , 2007, IEEE Transactions on Computers.

[36]  E. M. Lifshitz,et al.  Quantum mechanics: Non-relativistic theory, , 1959 .

[37]  G. Rastelli Semiclassical formula for quantum tunneling in asymmetric double-well potentials , 2012, 1205.0366.

[38]  G. Wendin,et al.  Superconducting Quantum Circuits, Qubits and Computing , 2005 .

[39]  Hsi-Sheng Goan,et al.  Optimal control for fast and high-fidelity quantum gates in coupled superconducting flux qubits , 2014, 1406.7707.

[40]  N. Vitanov Synthesis of arbitrary SU(3) transformations of atomic qutrits , 2012 .

[41]  Hai‐Rui Wei,et al.  Elementary gates for ternary quantum logic circuit , 2011, 1105.5485.