A Combinatorial Proof of Kneser’s Conjecture*
暂无分享,去创建一个
[1] László Lovász,et al. Kneser's Conjecture, Chromatic Number, and Homotopy , 1978, J. Comb. Theory A.
[2] Imre Bárány,et al. A Short Proof of Kneser's Conjecture , 1978, J. Comb. Theory, Ser. A.
[3] Jiri Matousek,et al. Topological lower bounds for the chromatic number: A hierarchy , 2003 .
[4] I. Kríz. A correction to “Equivariant cohomology and lower bounds for chromatic numbers” , 1992 .
[5] Jiří Matoušek,et al. On the chromatic number of Kneser hypergraphs , 2002 .
[6] Robert M. Freund,et al. Variable Dimension Complexes Part II: A Unified Approach to Some Combinatorial Lemmas in Topology , 2015, Math. Oper. Res..
[7] V. Dol'nikov,et al. TRANSVERSALS OF FAMILIES OF SETS IN $ \mathbb{R}^n$ AND A CONNECTION BETWEEN THE HELLY AND BORSUK THEOREMS , 1994 .
[8] Karanbir S. Sarkaria,et al. A generalized kneser conjecture , 1990, J. Comb. Theory, Ser. B.
[9] Michael J. Todd,et al. A Constructive Proof of Tucker's Combinatorial Lemma , 1981, J. Comb. Theory, Ser. A.
[10] J. Matousek,et al. Using The Borsuk-Ulam Theorem , 2007 .
[11] Igor Kriz. A correction to “Equivariant cohomology and lower bounds for chromatic numbers” , 1999 .
[12] G. Ziegler,et al. Generalized Kneser coloring theorems with combinatorial proofs , 2001, math/0103146.