Hydrogenation properties and crystal structure of YMgT4 (Т = Co, Ni, Cu) compounds

[1]  V. Pecharsky,et al.  Phase equilibria in the Mg–Ti–Ni system at 500 °C and hydrogenation properties of selected alloys , 2013 .

[2]  R. Černý,et al.  New CeMgCo4 and Ce2MgCo9 compounds: Hydrogenation properties and crystal structure of hydrides , 2012 .

[3]  R. Pöttgen,et al.  Structure, homogeneity ranges, magnetic, and electrical properties of the ordered Laves phases RENi4Mg with MgCu4Sn type structure , 2011 .

[4]  V. Yartys,et al.  Effect of magnesium on the crystal structure and thermodynamics of the La3−xMgxNi9 hydrides , 2011 .

[5]  Yongfeng Liu,et al.  Rare earth–Mg–Ni-based hydrogen storage alloys as negative electrode materials for Ni/MH batteries , 2011 .

[6]  V. Paul-Boncour,et al.  New Mg–Mn–Ni alloys as efficient hydrogen storage materials , 2010 .

[7]  J. Bobet,et al.  Stability of the hydrides REMgNi4H4 (RE = Y, Gd) from first principles , 2010 .

[8]  J. Bobet,et al.  X-ray/neutron diffraction studies and ab initio electronic structure of CeMgNi4 and its hydride , 2009 .

[9]  M. V. Lototsky,et al.  In situ synchrotron X-ray diffraction studies of hydrogen desorption and absorption properties of Mg and Mg–Mm–Ni after reactive ball milling in hydrogen , 2009 .

[10]  E. Akiba,et al.  In situ XRD for pseudo Laves phases hydrides highlighting the remained cubic structure , 2009 .

[11]  C. Stan,et al.  Structural and hydrogen absorption/desorption properties of YNi4−xAlxMg compounds (with 0 ≤ x ≤ 1.5) , 2008 .

[12]  C. Stan,et al.  In situ X-ray diffraction under H2 of the pseudo-AB2 compounds: YNi3.5Al0.5Mg , 2008 .

[13]  K. Yvon,et al.  Hydrogen induced site depopulation in the LaMgNi4-hydrogen system , 2008 .

[14]  M. Gupta,et al.  Ab initio study of the hydrogenation properties of Mg-based binary and ternary compounds Mg2X (X = Ni, Si) and YMgNi4 , 2007 .

[15]  Thomas Klassen,et al.  Hydrogen storage in magnesium-based hydrides and hydride composites , 2007 .

[16]  S. Orimo,et al.  Hydriding properties of ordered-/disordered-Mg-based ternary Laves phase structures , 2003 .

[17]  K. Yvon,et al.  Structure stability maps for intermetallic AB5 compounds , 2003 .

[18]  V. Favre-Nicolin,et al.  Synthesis, crystal structure and hydrogenation properties of the ternary compounds LaNi4Mg and NdNi4Mg , 2003 .

[19]  D. Noréus,et al.  Structural determination of AMgNi4 (where A=Ca, La, Ce, Pr, Nd and Y) in the AuBe5 type structure , 2002 .

[20]  Chen Linshen,et al.  Study on the phase composition of Mg2−xMxNi (M=Al, Ti) alloys , 2001 .

[21]  M. Kanda,et al.  Hydrogen storage properties of new ternary system alloys: La2MgNi9, La5Mg2Ni23, La3MgNi14 , 2000 .

[22]  S. Orimo,et al.  Structural and hydriding properties of MgYNi4:: A new intermetallic compound with C15b-type Laves phase structure , 2000 .

[23]  C. Geibel,et al.  Magnetic properties of new CeTMg compounds (T Ni, Pd) , 1997 .

[24]  M. Latroche,et al.  Structural Instability in R1−xNi2 Compounds and Their Hydrides (R = Y, Rare Earth)* , 1993 .

[25]  J. Pannetier,et al.  In situ neutron powder diffraction measurements of the absorption and desorption of hydrogen (deuterium) in (La,Ce)Ni2 compounds: Amorphization and recrystallization , 1988 .

[26]  J. J. Murray,et al.  The thermodynamics of the LaNi5-H2 system by differential heat flow calorimetry I: Techniques; the α + β two-phase region , 1981 .