Physics potential of an experiment using LHC neutrinos
暂无分享,去创建一个
F. Navarria | T. Rovelli | N. Beni | Z. Szillasi | D. Fasanella | S. Buontempo | Csic | S. Meo | A. Crescenzo | V. Cafaro | V. Giordano | G. Dallavalle | A. Margotti | G. Lellis | L. Patrizii | G. Sirri | F. Cerutti | M. Sabaté-Gilarte | S. Danzeca | M. Brucoli | A. Ioannisyan | F. S. Galan | P. S. Diaz | A. DeRoeck | C. Guandalini | C. Hungary | B. Usa | D. Lazic | A. D. Rújula | C. Switzerland | Infn Bologna Italy | Madrid Spain | Yerevan Armenia | Enea Bologna Italy | Sevilla Spain | Hephy Vienna Austria | M. Sabate-Gilarte
[1] F. Cerutti,et al. Further studies on the physics potential of an experiment using LHC neutrinos , 2020 .
[2] Jonathan L. Feng,et al. Detecting and studying high-energy collider neutrinos with FASER at the LHC , 2019, The European Physical Journal C.
[3] R. Bruce,et al. Validation of energy deposition simulations for proton and heavy ion losses in the CERN Large Hadron Collider , 2019, Physical Review Accelerators and Beams.
[4] A. M. Guler,et al. DsTau: study of tau neutrino production with 400 GeV protons from the CERN-SPS , 2019, Journal of High Energy Physics.
[5] Jonathan L. Feng,et al. TECHNICAL PROPOSAL: FASER, THE FORWARD SEARCH EXPERIMENT AT THE LHC , 2018 .
[6] A. Ustyuzhanin,et al. Machine Learning for electromagnetic showers reconstruction in emulsion cloud chambers , 2018, Journal of Physics: Conference Series.
[7] A. M. Guler,et al. Final Results of the OPERA Experiment on ν_{τ} Appearance in the CNGS Neutrino Beam. , 2018, Physical review letters.
[8] A. M. Guler,et al. Erratum: Final Results of the OPERA Experiment on ν_{τ} Appearance in the CNGS Neutrino Beam [Phys. Rev. Lett. 120, 211801 (2018)]. , 2018, Physical review letters.
[9] F. Navarria,et al. arXiv : CMS-XSEN: LHC Neutrinos at CMS. Experiment Feasibility Study , 2018, 1804.04413.
[10] B. Pritychenko,et al. The experimental nuclear reaction data (EXFOR): Extended computer database and Web retrieval system , 2018, 1802.05714.
[11] J. P. Barron,et al. Measurement of the multi-TeV neutrino interaction cross-section with IceCube using Earth absorption , 2017, Nature.
[12] M. A. Cortés-Giraldo,et al. GEANT4 simulations of the n_TOF spallation source and their benchmarking , 2015 .
[13] A. Fedynitch. Cascade equations and hadronic interactions at very high energies , 2015 .
[14] A. M. Guler,et al. Discovery of τ Neutrino Appearance in the CNGS Neutrino Beam with the OPERA Experiment. , 2015, Physical review letters.
[15] L. Dusseau,et al. A New RadMon Version for the LHC and its Injection Lines , 2014, IEEE Transactions on Nuclear Science.
[16] Peter Skands,et al. An introduction to PYTHIA 8.2 , 2014, Comput. Phys. Commun..
[17] P. W. Chin,et al. Overview of the FLUKA code , 2014, ICS 2014.
[18] P. Aspell,et al. Measurement of the forward charged-particle pseudorapidity density in pp collisions at √s = 7 TeV with the TOTEM experiment , 2012, 1205.4105.
[19] HyangKyu Park. The estimation of neutrino fluxes produced by proton-proton collisions at $ \sqrt {s} = 14 $ TeV of the LHC , 2011, 1110.1971.
[20] G. Spiezia,et al. An overview of the radiation environment at the LHC in light of R2E irradiation test activities , 2011 .
[21] A. M. Guler,et al. Momentum measurement by the multiple Coulomb scattering method in the OPERA lead-emulsion target , 2011, 1106.6211.
[22] M Brugger,et al. LHC RadMon SRAM Detectors Used at Different Voltages to Determine the Thermal Neutron to High Energy Hadron Fluence Ratio , 2011, IEEE Transactions on Nuclear Science.
[23] M. Reno,et al. Tau neutrino and antineutrino cross sections , 2010, 1007.1966.
[24] F. Juget. Electromagnetic shower reconstruction with emulsion films in the OPERA experiment , 2009 .
[25] R. Schwienhorst,et al. Final tau-neutrino results from the DONuT experiment , 2007, 0711.0728.
[26] G. Tzanakos,et al. A first measurement of the interaction cross section of the tau neutrino , 2007 .
[27] The Aleph Collaboration,et al. Precision electroweak measurements on the Z resonance , 2005, hep-ex/0509008.
[28] A. Boudard,et al. Intranuclear cascade model for a comprehensive description of spallation reaction data , 2002 .
[29] Alan D. Martin,et al. Review of Particle Physics , 2000, Physical Review D.
[30] Moscow,et al. Atmospheric muon flux at sea level, underground and underwater , 1998, hep-ph/9803488.
[31] M. Huhtinen,et al. Accelerator related background in the CMS detector at LHC , 1996 .
[32] R. Potheau,et al. The Bugey 3 neutrino detector , 1996 .
[33] E. Fernández,et al. Neutrino fluxes at future hadron colliders , 1993 .
[34] C. Jarlskog,et al. Neutrino production of $M^{+}$ and $E^{+}$heavy leptons I , 1975 .
[35] R. Stephenson. A and V , 1962, The British journal of ophthalmology.
[36] Y. Kadi,et al. LHC and HL-LHC: Present and Future Radiation Environment in the High-Luminosity Collision Points and RHA Implications , 2018, IEEE Transactions on Nuclear Science.
[37] M. Schwabe,et al. Highlights from the previous volumes , 2012 .
[38] L. A. Granado Cardoso,et al. Measurement of charged particle multiplicities in $pp$ collisions at ${\sqrt{s} =7}$TeV in the forward region , 2011, 1112.4592.
[39] A. Dell'Acqua,et al. Geant4—a simulation toolkit , 2003 .
[40] K. Winter. Detection of the tau-neutrino at the LHC , 1990 .
[41] L. Camilleri. Neutrino physics at LHC , 1990 .