Physics potential of an experiment using LHC neutrinos

Production of neutrinos is abundant at LHC. Flavour composition and energy reach of the neutrino flux from proton-proton collisions depend on the pseudorapidity $\eta$. At large $\eta$, energies can exceed the TeV, with a sizeable contribution of the $\tau$ flavour. A dedicated detector could intercept this intense neutrino flux in the forward direction, and measure the interaction cross section on nucleons in the unexplored energy range from a few hundred GeV to a few TeV. The high energies of neutrinos result in a larger $\nu$N interaction cross section, and the detector size can be relatively small. Machine backgrounds vary rapidly while moving along and away from the beam line. Four locations were considered as hosts for a neutrino detector: the CMS quadruplet region (~25 m from CMS Interaction Point (IP)), UJ53 and UJ57 (90 and 120 m from CMS IP), RR53 and RR57 (240 m from CMS IP), TI18 (480 m from ATLAS IP). The potential sites are studied on the basis of (a) expectations for neutrino interaction rates, flavour composition and energy spectrum, (b) predicted backgrounds and in-situ measurements, performed with a nuclear emulsion detector and radiation monitors. TI18 emerges as the most favourable location. A small detector in TI18 could measure, for the first time, the high-energy $\nu$N cross section, and separately for $\tau$ neutrinos, with good precision, already with 300 fb$^{-1}$ in the LHC Run3.

[1]  F. Cerutti,et al.  Further studies on the physics potential of an experiment using LHC neutrinos , 2020 .

[2]  Jonathan L. Feng,et al.  Detecting and studying high-energy collider neutrinos with FASER at the LHC , 2019, The European Physical Journal C.

[3]  R. Bruce,et al.  Validation of energy deposition simulations for proton and heavy ion losses in the CERN Large Hadron Collider , 2019, Physical Review Accelerators and Beams.

[4]  A. M. Guler,et al.  DsTau: study of tau neutrino production with 400 GeV protons from the CERN-SPS , 2019, Journal of High Energy Physics.

[5]  Jonathan L. Feng,et al.  TECHNICAL PROPOSAL: FASER, THE FORWARD SEARCH EXPERIMENT AT THE LHC , 2018 .

[6]  A. Ustyuzhanin,et al.  Machine Learning for electromagnetic showers reconstruction in emulsion cloud chambers , 2018, Journal of Physics: Conference Series.

[7]  A. M. Guler,et al.  Final Results of the OPERA Experiment on ν_{τ} Appearance in the CNGS Neutrino Beam. , 2018, Physical review letters.

[8]  A. M. Guler,et al.  Erratum: Final Results of the OPERA Experiment on ν_{τ} Appearance in the CNGS Neutrino Beam [Phys. Rev. Lett. 120, 211801 (2018)]. , 2018, Physical review letters.

[9]  F. Navarria,et al.  arXiv : CMS-XSEN: LHC Neutrinos at CMS. Experiment Feasibility Study , 2018, 1804.04413.

[10]  B. Pritychenko,et al.  The experimental nuclear reaction data (EXFOR): Extended computer database and Web retrieval system , 2018, 1802.05714.

[11]  J. P. Barron,et al.  Measurement of the multi-TeV neutrino interaction cross-section with IceCube using Earth absorption , 2017, Nature.

[12]  M. A. Cortés-Giraldo,et al.  GEANT4 simulations of the n_TOF spallation source and their benchmarking , 2015 .

[13]  A. Fedynitch Cascade equations and hadronic interactions at very high energies , 2015 .

[14]  A. M. Guler,et al.  Discovery of τ Neutrino Appearance in the CNGS Neutrino Beam with the OPERA Experiment. , 2015, Physical review letters.

[15]  L. Dusseau,et al.  A New RadMon Version for the LHC and its Injection Lines , 2014, IEEE Transactions on Nuclear Science.

[16]  Peter Skands,et al.  An introduction to PYTHIA 8.2 , 2014, Comput. Phys. Commun..

[17]  P. W. Chin,et al.  Overview of the FLUKA code , 2014, ICS 2014.

[18]  P. Aspell,et al.  Measurement of the forward charged-particle pseudorapidity density in pp collisions at √s = 7 TeV with the TOTEM experiment , 2012, 1205.4105.

[19]  HyangKyu Park The estimation of neutrino fluxes produced by proton-proton collisions at $ \sqrt {s} = 14 $ TeV of the LHC , 2011, 1110.1971.

[20]  G. Spiezia,et al.  An overview of the radiation environment at the LHC in light of R2E irradiation test activities , 2011 .

[21]  A. M. Guler,et al.  Momentum measurement by the multiple Coulomb scattering method in the OPERA lead-emulsion target , 2011, 1106.6211.

[22]  M Brugger,et al.  LHC RadMon SRAM Detectors Used at Different Voltages to Determine the Thermal Neutron to High Energy Hadron Fluence Ratio , 2011, IEEE Transactions on Nuclear Science.

[23]  M. Reno,et al.  Tau neutrino and antineutrino cross sections , 2010, 1007.1966.

[24]  F. Juget Electromagnetic shower reconstruction with emulsion films in the OPERA experiment , 2009 .

[25]  R. Schwienhorst,et al.  Final tau-neutrino results from the DONuT experiment , 2007, 0711.0728.

[26]  G. Tzanakos,et al.  A first measurement of the interaction cross section of the tau neutrino , 2007 .

[27]  The Aleph Collaboration,et al.  Precision electroweak measurements on the Z resonance , 2005, hep-ex/0509008.

[28]  A. Boudard,et al.  Intranuclear cascade model for a comprehensive description of spallation reaction data , 2002 .

[29]  Alan D. Martin,et al.  Review of Particle Physics , 2000, Physical Review D.

[30]  Moscow,et al.  Atmospheric muon flux at sea level, underground and underwater , 1998, hep-ph/9803488.

[31]  M. Huhtinen,et al.  Accelerator related background in the CMS detector at LHC , 1996 .

[32]  R. Potheau,et al.  The Bugey 3 neutrino detector , 1996 .

[33]  E. Fernández,et al.  Neutrino fluxes at future hadron colliders , 1993 .

[34]  C. Jarlskog,et al.  Neutrino production of $M^{+}$ and $E^{+}$heavy leptons I , 1975 .

[35]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[36]  Y. Kadi,et al.  LHC and HL-LHC: Present and Future Radiation Environment in the High-Luminosity Collision Points and RHA Implications , 2018, IEEE Transactions on Nuclear Science.

[37]  M. Schwabe,et al.  Highlights from the previous volumes , 2012 .

[38]  L. A. Granado Cardoso,et al.  Measurement of charged particle multiplicities in $pp$ collisions at ${\sqrt{s} =7}$TeV in the forward region , 2011, 1112.4592.

[39]  A. Dell'Acqua,et al.  Geant4—a simulation toolkit , 2003 .

[40]  K. Winter Detection of the tau-neutrino at the LHC , 1990 .

[41]  L. Camilleri Neutrino physics at LHC , 1990 .