NuSTAR RESOLVES THE FIRST DUAL AGN ABOVE 10 keV IN SWIFT J2028.5+2543

We have discovered heavy obscuration in the dual active galactic nucleus (AGN) in the Swift/Burst Alert Telescope (BAT) source SWIFT J2028.5+2543 using Nuclear Spectroscopic Telescope Array (NuSTAR). While an early XMM-Newton study suggested the emission was mainly from NGC 6921, the superior spatial resolution of NuSTAR above 10 keV resolves the Swift/BAT emission into two sources associated with the nearby galaxies MCG +04-48-002 and NGC 6921 (z = 0.014) with a projected separation of 25.3 kpc (91″). NuSTAR's sensitivity above 10 keV finds both are heavily obscured to Compton-thick levels (NH ≈ (1–2) × 1024 cm−2) and contribute equally to the BAT detection ( L 10 − 50 keV int ≈ 6 × 1042 erg s−1). The observed luminosity of both sources is severely diminished in the 2–10 keV band ( L 2 − 10 keV obs < 0.1 × L 2 − 10 keV int ), illustrating the importance of >10 keV surveys like those with NuSTAR and Swift/BAT. Compared to archival X-ray data, MCG +04-48-002 shows significant variability (>3) between observations. Despite being bright X-ray AGNs, they are difficult to detect using optical emission-line diagnostics because MCG +04-48-002 is identified as a starburst/composite because of the high rates of star formation from a luminous infrared galaxy while NGC 6921 is only classified as a LINER using line detection limits. SWIFT J2028.5+2543 is the first dual AGN resolved above 10 keV and is the second most heavily obscured dual AGN discovered to date in the X-rays other than NGC 6240.

[1]  D. Walton,et al.  Hard X-Ray Emission of the Luminous Infrared Galaxy NGC 6240 as Observed by Nustar , 2015, 1510.04477.

[2]  P. Gandhi,et al.  COMPTON-THICK ACCRETION IN THE LOCAL UNIVERSE , 2015, 1603.04852.

[3]  K. Schawinski,et al.  BAT AGN spectroscopic survey-II. X-ray emission and high-ionization optical emission lines , 2015, 1509.05425.

[4]  J. Comerford,et al.  THE ORIGIN OF DOUBLE-PEAKED NARROW LINES IN ACTIVE GALACTIC NUCLEI. I. VERY LARGE ARRAY DETECTIONS OF DUAL AGNs AND AGN OUTFLOWS , 2015, 1509.04291.

[5]  W. Duschl,et al.  The subarcsecond mid-infrared view of local active galactic nuclei – II. The mid-infrared–X-ray correlation , 2015, 1508.05065.

[6]  Kevin Schawinski,et al.  Active galactic nuclei flicker: an observational estimate of the duration of black hole growth phases of ∼105 yr , 2015 .

[7]  N. Zakamska,et al.  MERGER-DRIVEN FUELING OF ACTIVE GALACTIC NUCLEI: SIX DUAL AND OF AGNs DISCOVERED WITH CHANDRA AND HUBBLE SPACE TELESCOPE OBSERVATIONS , 2015 .

[8]  W. Brandt,et al.  NuSTAR REVEALS EXTREME ABSORPTION IN z < 0.5 TYPE 2 QUASARS , 2015, 1506.05120.

[9]  A. Fabian,et al.  Properties of AGN coronae in the NuSTAR era , 2015 .

[10]  W. N. Brandt,et al.  BROADBAND OBSERVATIONS OF THE COMPTON-THICK NUCLEUS OF NGC 3393 , 2015, 1505.03524.

[11]  D. Walton,et al.  DETERMINING THE COVERING FACTOR OF COMPTON-THICK ACTIVE GALACTIC NUCLEI WITH NuSTAR , 2015, 1502.07353.

[12]  S. Djorgovski,et al.  RADIO-SELECTED BINARY ACTIVE GALACTIC NUCLEI FROM THE VERY LARGE ARRAY STRIPE 82 SURVEY , 2014, 1411.0685.

[13]  M. Koss,et al.  AN INFRARED AND OPTICAL ANALYSIS OF A SAMPLE OF XBONGs AND OPTICALLY ELUSIVE AGNs , 2014, 1409.0905.

[14]  D. Walton,et al.  THE NuSTAR VIEW OF NEARBY COMPTON-THICK ACTIVE GALACTIC NUCLEI: THE CASES OF NGC 424, NGC 1320, AND IC 2560 , 2014, 1408.5414.

[15]  D. Walton,et al.  NuSTAR UNVEILS A COMPTON-THICK TYPE 2 QUASAR IN MrK 34 , 2014, 1407.1844.

[16]  D. Walton,et al.  THE NUSTAR VIEW OF NEARBY COMPTON-THICK AGN: THE CASES OF NGC 424, NGC 1320 AND IC 2560 , 2014 .

[17]  J. Comerford,et al.  DUAL SUPERMASSIVE BLACK HOLE CANDIDATES IN THE AGN AND GALAXY EVOLUTION SURVEY , 2013, 1309.2284.

[18]  S. Veilleux,et al.  STUDYING FAINT ULTRA-HARD X-RAY EMISSION FROM AGN IN GOALS LIRGS WITH SWIFT/BAT , 2013, 1302.0850.

[19]  William W. Zhang,et al.  THE NUCLEAR SPECTROSCOPIC TELESCOPE ARRAY (NuSTAR) HIGH-ENERGY X-RAY MISSION , 2013, Astronomical Telescopes and Instrumentation.

[20]  Chung-Pei Ma,et al.  REVISITING THE SCALING RELATIONS OF BLACK HOLE MASSES AND HOST GALAXY PROPERTIES , 2012, 1211.2816.

[21]  Yue Shen,et al.  CHANDRA X-RAY AND HUBBLE SPACE TELESCOPE IMAGING OF OPTICALLY SELECTED KILOPARSEC-SCALE BINARY ACTIVE GALACTIC NUCLEI. I. NATURE OF THE NUCLEAR IONIZING SOURCES , 2012, 1209.5418.

[22]  J. Falc'on-Barroso,et al.  MIUSCAT: extended MILES spectral coverage – I. Stellar population synthesis models , 2012, 1205.5496.

[23]  Richard Mushotzky,et al.  UNDERSTANDING DUAL ACTIVE GALACTIC NUCLEUS ACTIVATION IN THE NEARBY UNIVERSE , 2012, 1201.2944.

[24]  N. Gehrels,et al.  HOST GALAXY PROPERTIES OF THE SWIFT BAT ULTRA HARD X-RAY SELECTED ACTIVE GALACTIC NUCLEUS , 2011, 1107.1237.

[25]  K. Schawinski,et al.  CHANDRA DISCOVERY OF A BINARY ACTIVE GALACTIC NUCLEUS IN Mrk 739 , 2011, 1106.2163.

[26]  J. Comerford,et al.  CHANDRA OBSERVATIONS OF A 1.9 kpc SEPARATION DOUBLE X-RAY SOURCE IN A CANDIDATE DUAL ACTIVE GALACTIC NUCLEUS GALAXY AT z = 0.16 , 2011, 1106.0746.

[27]  Yue Shen,et al.  ACTIVE GALACTIC NUCLEUS PAIRS FROM THE SLOAN DIGITAL SKY SURVEY. I. THE FREQUENCY ON ∼5–100 kpc SCALES , 2011, 1104.0950.

[28]  Douglas P. Finkbeiner,et al.  MEASURING REDDENING WITH SLOAN DIGITAL SKY SURVEY STELLAR SPECTRA AND RECALIBRATING SFD , 2010, 1012.4804.

[29]  S. Veilleux,et al.  MERGING AND CLUSTERING OF THE SWIFT BAT AGN SAMPLE , 2010, 1006.0228.

[30]  T. Yaqoob,et al.  An X-ray spectral model for Compton-thick toroidal reprocessors , 2009, 0905.3188.

[31]  L. Kewley,et al.  GOALS: The Great Observatories All-Sky LIRG Survey , 2009, 0904.4498.

[32]  W. Duschl,et al.  Resolving the mid-infrared cores of local Seyferts , 2009, 0902.2777.

[33]  A. Fabian,et al.  Simultaneous X-ray/optical/UV snapshots of active galactic nuclei from XMM–Newton: spectral energy distributions for the reverberation mapped sample , 2008, 0810.3777.

[34]  L. Winter,et al.  X-RAY SPECTRAL PROPERTIES OF THE BAT AGN SAMPLE , 2008, 0808.0461.

[35]  L. Winter,et al.  X-Ray Properties of an Unbiased Hard X-Ray-detected Sample of Active Galactic Nuclei , 2007, 0711.0019.

[36]  Hilo,et al.  Molecular gas in nearby low-luminosity QSO host galaxies , 2007, 0706.2759.

[37]  Jean-Luc Starck,et al.  Astronomical Data Analysis , 2007 .

[38]  L. Kewley,et al.  The host galaxies and classification of active galactic nuclei , 2006, astro-ph/0605681.

[39]  T. D. Matteo,et al.  A Physical Model for the Origin of Quasar Lifetimes , 2005, astro-ph/0502241.

[40]  Scott D. Barthelmy,et al.  The Burst Alert Telescope (BAT) on the SWIFT Midex Mission , 2004, SPIE Optics + Photonics.

[41]  Eric Emsellem,et al.  Parametric Recovery of Line‐of‐Sight Velocity Distributions from Absorption‐Line Spectra of Galaxies via Penalized Likelihood , 2003, astro-ph/0312201.

[42]  Timothy M. Heckman,et al.  The host galaxies of active galactic nuclei , 2003 .

[43]  S. Komossa,et al.  Discovery of a Binary Active Galactic Nucleus in the Ultraluminous Infrared Galaxy NGC 6240 Using Chandra , 2002, astro-ph/0212099.

[44]  J. Hibbard,et al.  H I, H II, and R-Band Observations of a Galactic Merger Sequence , 1995, astro-ph/9512035.

[45]  A. Zdziarski,et al.  Angle-dependent Compton reflection of X-rays and gamma-rays , 1995 .

[46]  J. Mathis,et al.  The relationship between infrared, optical, and ultraviolet extinction , 1989 .