Constructing quantum measurement processes via classical stochastic calculus

A class of linear stochastic differential equations in Hilbert spaces is studied, which allows to construct probability densities and to generate changes in the probability measure one started with. Related linear equations for trace-class operators are discussed. Moreover, some analogue of filtering theory gives rise to related non-linear stochastic differential equations in Hilbert spaces and in the space of trace-class operators. Finally, it is shown how all these equations represent a new formulation and a generalization of the theory of measurements continuous in time in quantum mechanics.

[1]  Viacheslav P. Belavkin,et al.  A posterior Schrödinger equation for continuous nondemolition measurement , 1990 .

[2]  Pearle,et al.  Markov processes in Hilbert space and continuous spontaneous localization of systems of identical particles. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[3]  Giorgio Koch,et al.  On the unnormalized solution of the filtering problem with counting process observations , 1990, IEEE Transactions on Information Theory.

[4]  Lajos Diósi,et al.  Localized solution of a simple nonlinear quantum Langevin equation , 1988 .

[5]  L. Rogers Stochastic differential equations and diffusion processes: Nobuyuki Ikeda and Shinzo Watanabe North-Holland, Amsterdam, 1981, xiv + 464 pages, Dfl.175.00 , 1982 .

[6]  É. Pardoux,et al.  Filtrage Non Lineaire Et Equations Aux Derivees Partielles Stochastiques Associees , 1991 .

[7]  Alberto Barchielli Direct and heterodyne detection and other applications of quantum stochastic calculus to quantum optics , 1990 .

[8]  N. Gisin,et al.  Continuous quantum jumps and infinite-dimensional stochastic equations , 1991 .

[9]  Alberto Barchielli,et al.  Convolution semigroups in quantum probability and quantum stochastic calculus , 1989 .

[10]  N. Gisin,et al.  The quantum-state diffusion model applied to open systems , 1992 .

[11]  Alʹbert Nikolaevich Shiri︠a︡ev,et al.  Theory of martingales , 1989 .

[12]  Viacheslav P. Belavkin,et al.  A continuous counting observation and posterior quantum dynamics , 1989 .

[13]  V. P. Belavkin,et al.  A new wave equation for a continuous nondemolition measurement , 1989 .

[14]  N. Gisin Quantum measurements and stochastic processes , 1984 .

[15]  V. P. Belavkin,et al.  A quantum particle undergoing continuous observation , 1989 .

[16]  Alberto Barchielli,et al.  Quantum stochastic calculus, operation valued stochastic processes, and continual measurements in quantum mechanics , 1985 .

[17]  E. B. Davies Quantum theory of open systems , 1976 .

[18]  Viacheslav P. Belavkin,et al.  Nondemolition measurements, nonlinear filtering and dynamic programming of quantum stochastic processes , 1989 .

[19]  A. Holevo Statistical inference for quantum processes , 1991 .

[20]  Mark S. C. Reed,et al.  Method of Modern Mathematical Physics , 1972 .

[21]  Michel Métivier,et al.  Semimartingales: A course on stochastic processes , 1986 .

[22]  D. Lépingle,et al.  Sur l'intégrabilité uniforme des martingales exponentielles , 1978 .

[23]  G. Lindblad On the generators of quantum dynamical semigroups , 1976 .

[24]  Masanao Ozawa,et al.  Conditional Probability and A Posteriori States in Quantum Mechanics , 1985 .

[25]  Collett,et al.  Input and output in damped quantum systems: Quantum stochastic differential equations and the master equation. , 1985, Physical review. A, General physics.

[26]  A. Holevo,et al.  An analogue of Hunt's representation theorem in quantum probability , 1993 .

[27]  L. Di'osi,et al.  Continuous quantum measurement and itô formalism , 1988, 1812.11591.

[28]  A. N. Sirjaev,et al.  ABSOLUTE CONTINUITY AND SINGULARITY OF LOCALLY ABSOLUTELY CONTINUOUS PROBABILITY DISTRIBUTIONS. I , 1979 .

[29]  Alberto Barchielli,et al.  Statistics of continuous trajectories in quantum mechanics: Operation-valued stochastic processes , 1983 .

[30]  V. P. Belavkin,et al.  Measurements continuous in time and a posteriori states in quantum mechanics , 1991 .

[31]  W. H. Williams,et al.  Probability Theory and Mathematical Statistics , 1964 .