Putative tumor suppressor loci at 6q22 and 6q23-q24 are involved in the malignant progression of sporadic endocrine pancreatic tumors.

[1]  P. Komminoth,et al.  Deletion at 3p25.3–p23 is frequently encountered in endocrine pancreatic tumours and is associated with metastatic progression , 2001, The Journal of pathology.

[2]  H. Bonjer,et al.  Losses of chromosomes 1p and 3q are early genetic events in the development of sporadic pheochromocytomas. , 2000, The American journal of pathology.

[3]  C. Morelli,et al.  A human melanoma metastasis‐suppressor locus maps to 6q16.3‐q23 , 2000, International journal of cancer.

[4]  S. Satoh,et al.  Comprehensive allelotype study of hepatocellular carcinoma: Potential differences in pathways to hepatocellular carcinoma between hepatitis B virus–positive and –negative tumors , 2000, Hepatology.

[5]  C. Carlberg,et al.  Cyclin C is a primary 1α,25‐dihydroxyvitamin D3 responding gene , 2000 .

[6]  D. Bonthron,et al.  The cell cycle control gene ZAC/PLAGL1 is imprinted--a strong candidate gene for transient neonatal diabetes. , 2000, Human molecular genetics.

[7]  H. Moch,et al.  Genetic differences in endocrine pancreatic tumor subtypes detected by comparative genomic hybridization. , 1999, The American journal of pathology.

[8]  M. Papotti,et al.  Mixed medullary-follicular thyroid carcinoma. Molecular evidence for a dual origin of tumor components. , 1999, The American journal of pathology.

[9]  G. Åkerström,et al.  Genetic alterations on 3p, 11q13, and 18q in nonfamilial and MEN 1‐associated pancreatic endocrine tumors , 1999, Genes, chromosomes & cancer.

[10]  E. Speel,et al.  Analysis of genomic alterations in sporadic adrenocortical lesions. Gain of chromosome 17 is an early event in adrenocortical tumorigenesis. , 1999, The American journal of pathology.

[11]  K. Kok,et al.  Substantial reduction of the gastric carcinoma critical region at 6q16.3–q23.1 , 1999 .

[12]  K. Kok,et al.  Substantial reduction of the gastric carcinoma critical region at 6q16.3-q23.1. , 1999, Genes, chromosomes & cancer.

[13]  T. Henn,et al.  Cytogenetic and CGH studies of four neuroendocrine tumors and tumor-derived cell lines of a patient with multiple endocrine neoplasia type 1. , 1999, International journal of oncology.

[14]  David I. Smith,et al.  A novel region of deletion on chromosome 6q23.3 spanning less than 500 Kb in high grade invasive epithelial ovarian cancer , 1999, Oncogene.

[15]  F. Mostofi,et al.  Allelic loss on chromosome 6Q in primary prostate cancer , 1999, International journal of cancer.

[16]  T. Furukawa,et al.  Identification of three commonly deleted regions on chromosome arm 6q in human pancreatic cancer , 1999, Genes, chromosomes & cancer.

[17]  M. Rothmund,et al.  Mutations of the DPC4/Smad4 gene in neuroendocrine pancreatic tumors , 1999, Oncogene.

[18]  E. Speel,et al.  Mutations and allelic deletions of the MEN1 gene are associated with a subset of sporadic endocrine pancreatic and neuroendocrine tumors and not restricted to foregut neoplasms. , 1999, The American journal of pathology.

[19]  E. Speel,et al.  MEN1 Gene mutation analysis of sporadic adrenocortical lesions , 1999, International journal of cancer.

[20]  M. Sawicki,et al.  Deletion of chromosome 1 predicts prognosis in pancreatic endocrine tumors. , 1999, Cancer research.

[21]  P. Komminoth,et al.  Clonal analysis of sporadic pancreatic endocrine tumours , 1998, The Journal of pathology.

[22]  M. Sawicki,et al.  Mutation of the MENIN gene in sporadic pancreatic endocrine tumors. , 1998, Cancer research.

[23]  G. Pelosi,et al.  Pancreatic endocrine tumours: evidence for a tumour suppressor pathogenesis and for a tumour suppressor gene on chromosome 17p , 1998, The Journal of pathology.

[24]  F. Apiou,et al.  hZAC encodes a zinc finger protein with antiproliferative properties and maps to a chromosomal region frequently lost in cancer. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[25]  R. Siebert,et al.  Cytogenetical assignment and physical mapping of the human R-PTP-kappa gene (PTPRK) to the putative tumor suppressor gene region 6q22.2-q22.3. , 1998, Genomics.

[26]  M. Schrappe,et al.  Frequent loss of heterozygosity on the long arm of chromosome 6: identification of two distinct regions of deletion in childhood acute lymphoblastic leukemia. , 1998, Cancer research.

[27]  M. Lovett,et al.  A refined localization of two deleted regions in chromosome 6q associated with salivary gland carcinomas , 1998, Oncogene.

[28]  F. Collins,et al.  Somatic mutations of the MEN1 tumor suppressor gene in sporadic gastrinomas and insulinomas. , 1997, Cancer research.

[29]  D. Chung,et al.  A novel pancreatic endocrine tumor suppressor gene locus on chromosome 3p with clinical prognostic implications. , 1997, The Journal of clinical investigation.

[30]  K. Conlon,et al.  The molecular genetics of pancreatic cancer. , 1997, Surgical oncology.

[31]  A. Godwin,et al.  Identification of a gene containing zinc-finger motifs based on lost expression in malignantly transformed rat ovarian surface epithelial cells. , 1997, Cancer research.

[32]  Y Wang,et al.  Positional cloning of the gene for multiple endocrine neoplasia-type 1. , 1997, Science.

[33]  Yan A. Su,et al.  AIM1, a novel non-lens member of the βγ-crystallin superfamily, is associated with the control of tumorigenicity in human malignant melanoma , 1997 .

[34]  H. Ha,et al.  Transforming Growth Factor-β1 Inhibits Human Keratinocyte Proliferation by Upregulation of a Receptor-Type Tyrosine Phosphatase R-PTP-κ Gene Expression , 1996 .

[35]  A. Ullrich,et al.  Association of Human Protein-tyrosine Phosphatase κ with Members of the Armadillo Family* , 1996, The Journal of Biological Chemistry.

[36]  P. Meltzer,et al.  Isolation and characterization of genes associated with chromosome-6 mediated tumor suppression in human malignant melanoma. , 1996, Oncogene.

[37]  A. Look,et al.  Molecular cloning and chromosomal localization of the human cyclin C (CCNC) and cyclin E (CCNE) genes: deletion of the CCNC gene in human tumors. , 1996, Genomics.

[38]  V. Cryns,et al.  Genomic localization of novel candidate tumor suppressor gene loci in human parathyroid adenomas. , 1996, Cancer research.

[39]  J. Gnarra,et al.  Identification of the von Hippel-Lindau disease tumor suppressor gene. , 1993, Science.

[40]  J M Trent,et al.  Tumorigenicity in human melanoma cell lines controlled by introduction of human chromosome 6. , 1990, Science.

[41]  C. Carlberg,et al.  Cyclin C is a primary 1alpha,25-dihydroxyvitamin D(3) responding gene. , 2000, Journal of cellular biochemistry.

[42]  P. Komminoth,et al.  Human insulinoma: Clinical, cellular, and molecular aspects , 1999 .

[43]  P. Meltzer,et al.  AIM1, a novel non-lens member of the betagamma-crystallin superfamily, is associated with the control of tumorigenicity in human malignant melanoma. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[44]  H. Ha,et al.  Transforming growth factor-beta1 inhibits human keratinocyte proliferation by upregulation of a receptor-type tyrosine phosphatase R-PTP-kappa gene expression. , 1996, Biochemical and biophysical research communications.

[45]  Y. Nakamura,et al.  Isolation and mapping of 68 RFLP markers on human chromosome 6. , 1992, American journal of human genetics.

[46]  S. Asa,et al.  Functional endocrine pathology , 1991 .

[47]  Robert L. Hazelwood,et al.  The endocrine pancreas , 1989 .