Normalizing transformations for dead-time-modified Poisson counting distributions

Approximate normalizing transformations are derived for Poisson counting systems affected by nonparalyzable and paralyzable dead time. In the nonparalyzable case the transformation takes the form of a simple inverse hyperbolic function whereas in the paralyzable case it is an inverse trigonometric function. The results are expected to find use in neural counting, photon counting, and nuclear counting, as well as in queuing theory.

[1]  Malvin C. Teich,et al.  Dead-time-corrected photocounting distributions for laser radiation* , 1975 .

[2]  Jörg W. Müller Dead-time problems , 1973 .

[3]  J. Curtiss On Transformations Used in the Analysis of Variance , 1943 .

[4]  E D Young,et al.  Rate responses of auditory nerve fibers to tones in noise near masked threshold. , 1986, The Journal of the Acoustical Society of America.

[5]  Malvin C. Teich,et al.  Information, error, and imaging in deadtime-perturbed doubly stochastic Poisson counting systems , 1978 .

[6]  W. G. Cochran The Analysis of Variance when Experimental Errors Follow the Poisson or Binomial Laws , 1940 .

[7]  M C Teich,et al.  A neural-counting model incorporating refractoriness and spread of excitation. I. Application to intensity discrimination. , 1979, The Journal of the Acoustical Society of America.

[8]  Emanuel Parzen,et al.  Stochastic Processes , 1962 .

[9]  P. F. Manfredi,et al.  COUNTING STATISTICS AND DEAD-TIME LOSSES. PART 1 , 1964 .

[10]  J. Tukey,et al.  Transformations Related to the Angular and the Square Root , 1950 .

[11]  G. Bedard,et al.  Dead-time corrections to the statistical distribution of photoelectrons , 1967 .

[12]  Malvin Carl Teich,et al.  A neural-counting model based on physiological characteristics of the peripheral auditory system. V. Application to loudness estimation and intensity discrimination , 1984, IEEE Transactions on Systems, Man, and Cybernetics.

[13]  H. B. Dwight,et al.  Tables of Integrals and Other Mathematical Data , 1934 .

[14]  Jörg W. Müller Some formulae for a dead-time-distorted Poisson process , 1974 .

[15]  B E Saleh,et al.  Transformation of image-signal-dependent noise into image-signal-independent noise. , 1981, Optics letters.

[16]  M. Teich,et al.  Equivalence of threshold detection with and without dead time. , 1979, Applied optics.

[17]  M. S. Bartlett,et al.  The square root transformations in the analysis of variance , 1936 .

[18]  Apodization and image contrast: comment. , 1979, Applied optics.

[19]  Giovanni Vannucci,et al.  Observation of dead-time-modified photocounting distributions for modulated laser radiation , 1978 .

[20]  Paul R. Prucnal,et al.  Multiplication noise in the human visual system at threshold , 1982, Biological Cybernetics.

[21]  Pavel S. Serebrennikov Photoelectron statistics , 1999, Other Conferences.

[22]  Maurice G. Kendall,et al.  The advanced theory of statistics , 1945 .

[23]  M. Teich,et al.  An increment threshold law for stimuli of arbitrary statistics , 1980 .

[24]  M C Teich,et al.  Refractoriness in the maintained discharge of the cat's retinal ganglion cell. , 1978, Journal of the Optical Society of America.

[25]  Paul R. Prucnal,et al.  Refractory effects in neural counting processes with exponentially decaying rates , 1983, IEEE Transactions on Systems, Man, and Cybernetics.

[26]  F. J. Anscombe,et al.  THE TRANSFORMATION OF POISSON, BINOMIAL AND NEGATIVE-BINOMIAL DATA , 1948 .

[27]  M. Teich,et al.  A neural-counting model incorporating refractoriness and spread of excitation. II. Application to loudness estimation. , 1981, The Journal of the Acoustical Society of America.

[28]  M. Teich,et al.  Relative refractoriness in visual information processing , 1980, Biological Cybernetics.

[29]  Luigi M. Ricciardi,et al.  On some distribution functions for non-linear switching elements with finite dead time , 1966, Kybernetik.

[30]  Paul R. Prucnal,et al.  Multiplication noise in the human visual system at threshold: 2. Probit estimation of parameters , 1982, Biological Cybernetics.

[31]  G Kendall Maurice,et al.  The Advanced Theory Of Statistics Vol-i , 1943 .

[32]  P. Prucnal Receiver performance evaluation using photocounting cumulants with application to atmospheric turbulence. , 1980, Applied optics.

[33]  C. G. Mueller A QUANTITATIVE THEORY OF VISUAL EXCITATION FOR THE SINGLE PHOTORECEPTOR. , 1954, Proceedings of the National Academy of Sciences of the United States of America.

[34]  M. G. Kendall,et al.  The advanced theory of statistics. Vols. 2. , 1969 .

[35]  J. Tukey On the Comparative Anatomy of Transformations , 1957 .

[36]  Contributions to the Statistical Theory of Counter Data , 1953 .

[37]  J. Libert Comparaison des distributions statistiques de comptage des systèmes radioactifs , 1976 .