On $${\varvec{m}}$$m-step Hermitian and skew-Hermitian splitting preconditioning methods

Preconditioners are often applied in various Krylov subspace iteration methods to improve their computing efficiency. In this paper, we consider solving linear systems with a non-Hermitian positive definite coefficient matrix using preconditioned Krylov subspace iteration methods such as the generalized minimal residual (GMRES) method. An $$m$$m-step polynomial preconditioner is designed based on the Hermitian and skew-Hermitian splitting (HSS) iteration method proposed by Bai et al. (SIAM J Matrix Anal Appl 24:603–626, 2003). The proposed preconditioned system is solved by fully utilizing the HSS iteration method. Theoretical and experimental results show that the proposed $$m$$m-step preconditioner is efficient in accelerating GMRES for solving a non-Hermitian positive definite linear system.

[1]  Michele Benzi,et al.  Spectral Properties of the Hermitian and Skew-Hermitian Splitting Preconditioner for Saddle Point Problems , 2005, SIAM J. Matrix Anal. Appl..

[2]  Zhong-Zhi Bai A class of modified block SSOR preconditioners for symmetric positive definite systems of linear equations , 1999, Adv. Comput. Math..

[3]  Yu-Mei Huang,et al.  A practical formula for computing optimal parameters in the HSS iteration methods , 2014, J. Comput. Appl. Math..

[4]  Guo-Feng Zhang,et al.  On HSS-based constraint preconditioners for generalized saddle-point problems , 2010, Numerical Algorithms.

[5]  Zhong-Zhi Bai,et al.  Structured preconditioners for nonsingular matrices of block two-by-two structures , 2005, Math. Comput..

[6]  Zhong-Zhi Bai,et al.  The monotone convergence of the two-stage iterative method for solving large sparse systems of linear equations , 1997 .

[7]  J. M. Ortega,et al.  Optimum m -step SSOR preconditioning , 1988 .

[8]  J. Ortega Numerical Analysis: A Second Course , 1974 .

[9]  Gene H. Golub,et al.  Preconditioned HSS methods for the solution of non-Hermitian positive definite linear systems and applications to the discrete convection-diffusion equation , 2005, Numerische Mathematik.

[10]  Z. Bai,et al.  Restrictively preconditioned conjugate gradient methods for systems of linear equations , 2003 .

[11]  Zhong-Zhi Bai,et al.  A class of two‐stage iterative methods for systems of weakly nonlinear equations , 1997, Numerical Algorithms.

[12]  Yang Wang,et al.  On validity of m-step multisplitting preconditioners for linear systems , 2002, Appl. Math. Comput..

[13]  M. Ng,et al.  Spectral Analysis for HSS Preconditioners , 2008 .

[14]  S. Venit,et al.  Numerical Analysis: A Second Course. , 1974 .

[15]  Gene H. Golub,et al.  Preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite linear systems , 2004, Numerische Mathematik.

[16]  Loyce M. Adams,et al.  Additive polynomial preconditioners for parallel computers , 1989, Parallel Comput..

[17]  Yousef Saad,et al.  A Flexible Inner-Outer Preconditioned GMRES Algorithm , 1993, SIAM J. Sci. Comput..

[18]  Henk A. van der Vorst,et al.  Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..

[19]  Gene H. Golub,et al.  A Preconditioner for Generalized Saddle Point Problems , 2004, SIAM J. Matrix Anal. Appl..

[20]  Michael K. Ng,et al.  BLOCK-TRIANGULAR PRECONDITIONERS FOR SYSTEMS ARISING FROM EDGE-PRESERVING IMAGE RESTORATION , 2010 .

[21]  Zhong-Zhi Bai,et al.  The convergence of the two-stage iterative method for Hermitian positive definite linear systems , 1998 .

[22]  Gene H. Golub,et al.  Convergence properties of preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite matrices , 2007, Math. Comput..

[23]  Gene H. Golub,et al.  Accelerated Hermitian and skew-Hermitian splitting iteration methods for saddle-point problems , 2007 .

[24]  Zeng-Qi Wang,et al.  Restrictive preconditioners for conjugate gradient methods for symmetric positive definite linear systems , 2006 .

[25]  Apostolos Hadjidimos,et al.  Some notes on multisplltting methods and m-step preconditioners for linear systems , 1996 .

[26]  A. Hadjidimos,et al.  On Multisplitt ing Methods and m-Step Preconditioners for Parallel and Vector Machines , 1992 .

[27]  Gene H. Golub,et al.  On successive‐overrelaxation acceleration of the Hermitian and skew‐Hermitian splitting iterations , 2007, Numer. Linear Algebra Appl..

[28]  P. Sonneveld CGS, A Fast Lanczos-Type Solver for Nonsymmetric Linear systems , 1989 .

[29]  Michael K. Ng,et al.  Preconditioned Iterative Methods for Weighted Toeplitz Least Squares Problems , 2005, SIAM J. Matrix Anal. Appl..

[30]  M. Ng Circulant and skew-circulant splitting methods for Toeplitz systems , 2003 .

[31]  Gene H. Golub,et al.  Block Triangular and Skew-Hermitian Splitting Methods for Positive-Definite Linear Systems , 2005, SIAM J. Sci. Comput..

[32]  Owe Axelsson,et al.  A Class of Nested Iteration Schemes for Linear Systems with a Coefficient Matrix with a Dominant Positive Definite Symmetric Part , 2004, Numerical Algorithms.

[33]  Yu-Jiang Wu,et al.  A generalized preconditioned HSS method for non-Hermitian positive definite linear systems , 2010, Appl. Math. Comput..

[34]  Gene H. Golub,et al.  Optimal Parameter in Hermitian and Skew-Hermitian Splitting Method for Certain Two-by-Two Block Matrices , 2006, SIAM J. Sci. Comput..

[35]  Michele Benzi,et al.  A Generalization of the Hermitian and Skew-Hermitian Splitting Iteration , 2009, SIAM J. Matrix Anal. Appl..

[36]  Zhong-Zhi Bai,et al.  A unified framework for the construction of various matrix multisplitting iterative methods for large sparse system of linear equations , 1996 .

[37]  Gene H. Golub,et al.  Hermitian and Skew-Hermitian Splitting Methods for Non-Hermitian Positive Definite Linear Systems , 2002, SIAM J. Matrix Anal. Appl..

[38]  M. Hestenes,et al.  Methods of conjugate gradients for solving linear systems , 1952 .

[39]  R. Grimes,et al.  On vectorizing incomplete factorization and SSOR preconditioners , 1988 .

[40]  Xiaoge Wang,et al.  CIMGS: An Incomplete Orthogonal FactorizationPreconditioner , 1997, SIAM J. Sci. Comput..

[41]  Cornelis Vuik,et al.  GMRESR: a family of nested GMRES methods , 1994, Numer. Linear Algebra Appl..

[42]  O. Axelsson Iterative solution methods , 1995 .

[43]  L. Adams m-Step Preconditioned Conjugate Gradient Methods , 1985 .

[44]  D. Kershaw The incomplete Cholesky—conjugate gradient method for the iterative solution of systems of linear equations , 1978 .