A Hybrid Framework for Mobile Robot Localization: Formulation Using Switching State-Space Models

In this paper we address one of the most important issues for autonomous mobile robots, namely their ability to localize themselves safely and reliably within their environments. We propose a probabilistic framework for modelling the robot's state and sensory information based on a Switching State-Space Model. The proposed framework generalizes two of the most successful probabilistic model families currently used for this purpose: the Kalman filter Linear models and the Hidden Markov Models. The proposed model combines the advantages of both models, relaxing at the same time inherent assumptions made individually in each of these existing models.

[1]  Reid G. Simmons,et al.  Probabilistic Robot Navigation in Partially Observable Environments , 1995, IJCAI.

[2]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[3]  Wolfram Burgard,et al.  Integrating global position estimation and position tracking for mobile robots: the dynamic Markov localization approach , 1998, Proceedings. 1998 IEEE/RSJ International Conference on Intelligent Robots and Systems. Innovations in Theory, Practice and Applications (Cat. No.98CH36190).

[4]  Stergios I. Roumeliotis,et al.  Bayesian estimation and Kalman filtering: a unified framework for mobile robot localization , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[5]  Illah R. Nourbakhsh,et al.  DERVISH - An Office-Navigating Robot , 1995, AI Mag..

[6]  Wolfram Burgard,et al.  Robust Monte Carlo localization for mobile robots , 2001, Artif. Intell..

[7]  Wolfram Burgard,et al.  Probabilistic Algorithms and the Interactive Museum Tour-Guide Robot Minerva , 2000, Int. J. Robotics Res..

[8]  Panos E. Trahanias,et al.  An iterative approach for building feature maps in cyclic environments , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.

[9]  Geoffrey E. Hinton,et al.  Switching State-Space Models , 1996 .

[10]  José A. Castellanos,et al.  Simultaneous map building and localization for mobile robots: a multisensor fusion approach , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[11]  Randall Smith,et al.  Estimating Uncertain Spatial Relationships in Robotics , 1987, Autonomous Robot Vehicles.

[12]  Evangelos E. Milios,et al.  Robot Pose Estimation in Unknown Environments by Matching 2D Range Scans , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[13]  T. S. Michael,et al.  Sphere of influence graphs in general metric spaces , 1999 .

[14]  Peter Lamb,et al.  Combining Kalman Filtering and Markov Localization in Network-Like Environments , 2000, PRICAI.

[15]  Roland Siegwart,et al.  Multisensor on-the-fly localization using laser and vision , 2000, Proceedings. 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2000) (Cat. No.00CH37113).

[16]  Yaakov Bar-Shalom,et al.  Estimation and Tracking: Principles, Techniques, and Software , 1993 .

[17]  Randall Smith,et al.  Estimating uncertain spatial relationships in robotics , 1986, Proceedings. 1987 IEEE International Conference on Robotics and Automation.

[18]  Bernhard Nebel,et al.  A fast, accurate and robust method for self-localization in polygonal environments using laser range finders , 2001, Adv. Robotics.

[19]  Patric Jensfelt,et al.  Active global localization for a mobile robot using multiple hypothesis tracking , 2001, IEEE Trans. Robotics Autom..

[20]  Thomas P. Minka,et al.  From Hidden Markov Models to Linear Dynamical Systems , 1999 .

[21]  Ingemar J. Cox,et al.  Autonomous Robot Vehicles , 1990, Springer New York.

[22]  Tom Duckett,et al.  Mobile robot self-localisation using occupancy histograms and a mixture of Gaussian location hypotheses , 2001, Robotics Auton. Syst..

[23]  Gary Benson,et al.  Sequence alignment with tandem duplication , 1997, RECOMB '97.

[24]  Ingemar J. Cox,et al.  Modeling a Dynamic Environment Using a Bayesian Multiple Hypothesis Approach , 1994, Artif. Intell..

[25]  Tod S. Levitt,et al.  Qualitative Navigation for Mobile Robots , 1990, Artif. Intell..

[26]  Wolfram Burgard,et al.  Monte Carlo localization for mobile robots , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[27]  Wolfram Burgard,et al.  An experimental comparison of localization methods , 1998, Proceedings. 1998 IEEE/RSJ International Conference on Intelligent Robots and Systems. Innovations in Theory, Practice and Applications (Cat. No.98CH36190).

[28]  Juan D. Tardós,et al.  Mobile robot localisation and map building using monocular vision , 1997 .

[29]  G. Bierman Stochastic models, estimation, and control , 1983 .

[30]  Leslie Pack Kaelbling,et al.  Acting under uncertainty: discrete Bayesian models for mobile-robot navigation , 1996, Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. IROS '96.

[31]  Lynne E. Parker,et al.  Quantitative and qualitative comparison of three laser-range mapping algorithms using two types of laser scanner data , 2000, Smc 2000 conference proceedings. 2000 ieee international conference on systems, man and cybernetics. 'cybernetics evolving to systems, humans, organizations, and their complex interactions' (cat. no.0.

[32]  W. Burgard,et al.  Markov Localization for Mobile Robots in Dynamic Environments , 1999, J. Artif. Intell. Res..