Statistical field estimation and scale estimation for complex coastal regions and archipelagos

Abstract : A fundamental requirement in realistic computational geophysical fluid dynamics is the optimal estimation of gridded fields and of spatial-temporal scales directly from the spatially irregular and multivariate data sets that are collected by varied instruments and sampling schemes. In this work, we derive and utilize new schemes for the mapping and dynamical inference of ocean fields in complex multiply-connected domains, study the computational properties of our new mapping schemes, and derive and investigate new schemes for adaptive estimation of spatial and temporal scales. Adaptive methodologies for the spatial-temporal scale estimation are proposed. The ultimate goal of all these methods would be to create maps of spatial and temporal scales that evolve as new ocean data are fed to the scheme. This would potentially be a significant advance to the ocean community for better understanding and sampling of ocean processes.

[1]  E. Rouy,et al.  A viscosity solutions approach to shape-from-shading , 1992 .

[2]  F. Bretherton,et al.  A technique for objective analysis and design of oceanographic experiments applied to MODE-73* , 2002 .

[3]  R. Daley Atmospheric Data Analysis , 1991 .

[4]  W. G. Leslie,et al.  Spatial and Temporal Variations in Acoustic propagation during the PLUSNet'07 Exercise in Dabob Bay , 2008 .

[5]  Allan R. Robinson,et al.  Analysis models for the estimation of oceanic fields , 1987 .

[6]  Howard J. Freeland,et al.  Correlation scales, objective mapping and a statistical test of geostrophy over the continental shelf , 1985 .

[7]  Alan Sussman,et al.  Strictly positive definite correlation functions , 2006, SPIE Defense + Commercial Sensing.

[8]  John G. Proakis,et al.  Probability, random variables and stochastic processes , 1985, IEEE Trans. Acoust. Speech Signal Process..

[9]  Stephen Pond,et al.  An objective analysis of the low‐frequency currents in the Strait of Georgia , 1988 .

[10]  Lisa Burton,et al.  Modeling coupled physics and biology in ocean straits , 2009 .

[11]  Timothy P. Boyer,et al.  World Ocean Atlas 1994. Volume 4. Temperature , 1994 .

[12]  A.P.S. Selvadurai,et al.  Partial differential equations in mechanics , 2000 .

[13]  A. Yaglom,et al.  An Introduction to the Theory of Stationary Random Functions , 1963 .

[14]  John I. Antonov World ocean atlas, 1998. Volume 2, Temperature of the Pacific Ocean , 1998 .

[15]  S. Barnes,et al.  A Technique for Maximizing Details in Numerical Weather Map Analysis , 1964 .

[16]  R. Plackett Some theorems in least squares. , 1950, Biometrika.

[17]  P. Gács,et al.  Algorithms , 1992 .

[18]  M. Ghil,et al.  A stochastic-dynamic model for the spatial structure of forecast error statistics , 1983 .

[19]  John N. Tsitsiklis,et al.  Introduction to linear optimization , 1997, Athena scientific optimization and computation series.

[20]  Stephen E. Cohn,et al.  A Kalman filter for a two-dimensional shallow-water model, formulation and preliminary experiments , 1985 .

[21]  J. Sethian,et al.  FRONTS PROPAGATING WITH CURVATURE DEPENDENT SPEED: ALGORITHMS BASED ON HAMILTON-JACOB1 FORMULATIONS , 2003 .

[22]  J A Sethian,et al.  A fast marching level set method for monotonically advancing fronts. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[23]  A. Yaglom Correlation Theory of Stationary and Related Random Functions I: Basic Results , 1987 .

[24]  Mohinder S. Grewal,et al.  Kalman Filtering: Theory and Practice , 1993 .

[25]  L. Gandin Objective Analysis of Meteorological Fields , 1963 .

[26]  Hideki Kakiuchi,et al.  Geochemical implications for the mechanism of deep convection in a semi-closed tropical marginal basin: Sulu Sea , 2007 .

[27]  G. Hessler,et al.  Experiments with statistical objective analysis techniques for representing a coastal surface temperature field , 1984 .

[28]  Stanley L. Barnes,et al.  Applications of the Barnes Objective Analysis Scheme. Part III: Tuning for Minimum Error , 1994 .

[29]  C. Pfeiffer Astronautical guidance , 1966 .

[30]  S. Barnes,et al.  Mesoscale objective map analysis using weighted time-series observations , 1973 .

[31]  M. Oh,et al.  Suboptimal continuous filtering based on the decomposition of observation vector , 1996 .

[32]  Timothy P. Boyer,et al.  World Ocean Atlas 2005, Volume 3: Dissolved Oxygen, Apparent Oxygen Utilization, and Oxygen Saturation [+DVD] , 2006 .

[33]  Richard A. Brown,et al.  Introduction to random signals and applied kalman filtering (3rd ed , 2012 .

[34]  J. Holton Geophysical fluid dynamics. , 1983, Science.

[35]  Ron Kimmel,et al.  Fast Marching Methods , 2004 .

[36]  Patrick Oonincx,et al.  Second generation wavelets and applications , 2005 .

[37]  Jack Bresenham,et al.  Algorithm for computer control of a digital plotter , 1965, IBM Syst. J..

[38]  Wim Sweldens,et al.  The lifting scheme: a construction of second generation wavelets , 1998 .

[39]  K. Hoffmann,et al.  Computational Fluid Dynamics for Engineers , 1989 .

[40]  S. Levitus Climatological Atlas of the World Ocean , 1982 .

[41]  Donald B. Olson,et al.  Multivariate objective analysis of the coastal circulation of Barbados, West Indies: implication for larval transport , 2002 .

[42]  Sydney Levitus,et al.  World ocean atlas 2005. Vol. 4, Nutrients (phosphate, nitrate, silicate) , 2006 .

[43]  Pierre F. J. Lermusiaux,et al.  Forecasting and Reanalysis in the Monterey Bay/California Current Region for the Autonomous Ocean Sampling Network-II Experiment , 2009 .

[44]  G. Bierman Factorization methods for discrete sequential estimation , 1977 .

[45]  Daniel R. Lynch,et al.  Objective analysis for coastal regimes , 2001 .

[46]  Marko Subasic,et al.  Level Set Methods and Fast Marching Methods , 2003 .

[47]  C. Wunsch The Ocean Circulation Inverse Problem , 1996 .