Tip-Enhanced Raman Spectroscopy of Combed Double-Stranded DNA Bundles

Double-stranded (ds) DNA of a λ-phage virus are combed on octadecyltrichlorosilane (OTS)-modified borosilicate glass substrates and investigated by means of tip-enhanced Raman spectroscopy (TERS) using tips coated with an Ag/Au bilayer. Owing to an enhancement factor higher than 6 × 102 and a lateral spatial resolution better than 9 nm (which is below the size of the tip apex radius), cross-sections of nanowire-shaped thin DNA bundles can be spatially resolved. TER spectra reveal vibrational modes typical of DNA nucleobases and backbone, as confirmed by confocal Raman measurements carried out on dense stacks of DNA strands. While the TER signature of nucleobases is congruent with observations in single-stranded (ss) DNA, additional modes tied to the DNA backbone can be discerned in ds DNA. TERS enables ss and ds DNA samples to be distinguished from each other and hence can be exploited for the detection of DNA hybridization. Moreover, no TER contribution of the OTS layer appears, suggesting that functiona...

[1]  Volker Deckert,et al.  Tip-enhanced Raman spectroscopy of single RNA strands: towards a novel direct-sequencing method. , 2008, Angewandte Chemie.

[2]  A Bensimon,et al.  pH-dependent specific binding and combing of DNA. , 1997, Biophysical journal.

[3]  Volker Deckert,et al.  Controlled Formation of Isolated Silver Islands for Surface-Enhanced Raman Scattering , 2000 .

[4]  J. Kjems,et al.  Self-assembly of a nanoscale DNA box with a controllable lid , 2009, Nature.

[5]  Matthew D Sonntag,et al.  Tip-enhanced Raman imaging: an emergent tool for probing biology at the nanoscale. , 2013, ACS nano.

[6]  Bernd Giese,et al.  Surface-Enhanced Raman Spectroscopic and Density Functional Theory Study of Adenine Adsorption to Silver Surfaces , 2002 .

[7]  Kersten S. Rabe,et al.  Orthogonal protein decoration of DNA origami. , 2010, Angewandte Chemie.

[8]  G. Thomas,et al.  Polarized Raman spectra of oriented fibers of A DNA and B DNA: anisotropic and isotropic local Raman tensors of base and backbone vibrations. , 1995, Biophysical journal.

[9]  R. Zenobi,et al.  Nanoscale chemical imaging of segregated lipid domains using tip-enhanced Raman spectroscopy. , 2011, Physical chemistry chemical physics : PCCP.

[10]  Renato Zenobi,et al.  Performing tip‐enhanced Raman spectroscopy in liquids , 2009 .

[11]  R. Zenobi,et al.  Full spectroscopic tip-enhanced Raman imaging of single nanotapes formed from β-amyloid(1-40) peptide fragments. , 2013, ACS nano.

[12]  Volker Deckert,et al.  Catalytic processes monitored at the nanoscale with tip-enhanced Raman spectroscopy. , 2012, Nature nanotechnology.

[13]  D N Batchelder,et al.  Apertureless near‐field Raman spectroscopy , 2003, Journal of microscopy.

[14]  Y. Morita,et al.  Temporal fluctuation of tip-enhanced raman spectra of adenine molecules , 2007 .

[15]  S. Kawata,et al.  Pressure-assisted tip-enhanced Raman imaging at a resolution of a few nanometres , 2009 .

[16]  R. Zenobi,et al.  Nanoscale chemical analysis by tip-enhanced Raman spectroscopy , 2000 .

[17]  Renato Zenobi,et al.  Nanoscale chemical imaging using tip-enhanced Raman spectroscopy: a critical review. , 2013, Angewandte Chemie.

[18]  S. Kawata,et al.  Experimental Identification of Chemical Effects in Surface Enhanced Raman Scattering of 4-Aminothiophenol† , 2010 .

[19]  Achim Hartschuh,et al.  Tip-enhanced near-field optical microscopy. , 2008, Angewandte Chemie.

[20]  D. Talaga,et al.  Raman Spectroscopic Investigation of Individual Single-Walled Carbon Nanotubes Helically Wrapped by Ionic, Semiconducting Polymers , 2013 .

[21]  Philip Tinnefeld,et al.  Fluorescence Enhancement at Docking Sites of DNA-Directed Self-Assembled Nanoantennas , 2012, Science.

[22]  Y. Coffinier,et al.  Combed single DNA molecules imaged by secondary ion mass spectrometry. , 2011, Analytical chemistry.

[23]  M. Mahmoud,et al.  Effect of silver nanowires on the surface-enhanced Raman spectra (SERS) of the RNA bases. , 2006, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[24]  Characterization of single transition metal oxide nanorods by combining atomic force microscopy and polarized micro-Raman spectroscopy , 2011 .

[25]  Volker Deckert,et al.  Surface- and tip-enhanced Raman scattering of DNA components† , 2006 .

[26]  Jürgen Popp,et al.  Raman to the limit: tip‐enhanced Raman spectroscopic investigations of a single tobacco mosaic virus , 2009 .

[27]  G. Thomas,et al.  Vibrational analysis of nucleic acids. I. The phosphodiester group in dimethyl phosphate model compounds: (CH3O)2PO2-, (CD3O)2PO2-, and (13CH3O)2PO2-. , 1994, Biophysical journal.

[28]  Philipp C Nickels,et al.  DNA origami nanopillars as standards for three-dimensional superresolution microscopy. , 2013, Nano letters.

[29]  Philip Tinnefeld,et al.  Single-molecule four-color FRET visualizes energy-transfer paths on DNA origami. , 2011, Journal of the American Chemical Society.

[30]  J. L. Yang,et al.  Chemical mapping of a single molecule by plasmon-enhanced Raman scattering , 2013, Nature.

[31]  Jürgen Popp,et al.  On the way to nanometer-sized information of the bacterial surface by tip-enhanced Raman spectroscopy. , 2006, Chemphyschem : a European journal of chemical physics and physical chemistry.

[32]  Alistair Elfick,et al.  Finite element simulations of tip-enhanced Raman and fluorescence spectroscopy. , 2006, The journal of physical chemistry. B.

[33]  Z. Jiang,et al.  Silicon-based reproducible and active surface-enhanced Raman scattering substrates for sensitive, specific, and multiplex DNA detection , 2012 .

[34]  L. Movileanu,et al.  TEMPERATURE DEPENDENCE OF THE RAMAN SPECTRUM OF DNA. PART I : RAMAN SIGNATURES OF PREMELTING AND MELTING TRANSITIONS OF POLY(DA-DT).POLY(DA-DT) , 1999 .

[35]  Nak Han Jang,et al.  The Coordination Chemistry of DNA Nucleosides on Gold Nanoparticles as a Probe by SERS , 2002 .

[36]  B. Pettinger,et al.  Tip-enhanced Raman spectroscopy and microscopy on single dye molecules with 15 nm resolution. , 2008, Physical review letters.

[37]  P. Bartlett,et al.  A label-free, electrochemical SERS-based assay for detection of DNA hybridization and discrimination of mutations. , 2012, Journal of the American Chemical Society.

[38]  S. Kawata,et al.  Towards atomic site-selective sensitivity in tip-enhanced Raman spectroscopy. , 2006, The Journal of chemical physics.

[39]  W. B. Knowlton,et al.  Programmable Periodicity of Quantum Dot Arrays with DNA Origami Nanotubes , 2010, Nano letters.

[40]  Volker Deckert,et al.  Distinction of nucleobases – a tip-enhanced Raman approach , 2011, Beilstein journal of nanotechnology.

[41]  George C. Schatz,et al.  Single-Molecule Tip-Enhanced Raman Spectroscopy , 2012 .

[42]  D. Bulgarevich,et al.  Apertureless Tip-Enhanced Raman Microscopy with Confocal Epi-Illumination/Collection Optics , 2004, Applied spectroscopy.

[43]  Renato Zenobi,et al.  Nanoscale chemical imaging of single-layer graphene. , 2011, ACS nano.

[44]  Mino Green,et al.  SERS platforms for high density DNA arrays. , 2006, Faraday discussions.

[45]  R. Ossikovski,et al.  Depolarization effects in tip-enhanced Raman spectroscopy , 2009 .

[46]  S. Kawata,et al.  Subnanometric near-field Raman investigation in the vicinity of a metallic nanostructure. , 2009, Physical review letters.

[47]  Lukas Novotny,et al.  Nanoscale optical imaging of excitons in single-walled carbon nanotubes. , 2005, Nano letters.

[48]  S. Kawata,et al.  Tip-enhanced near-field Raman analysis of tip-pressurized adenine molecule , 2004 .