Experimental examination of the Mg-silicate-carbonate system at ambient temperature: Implications for alkaline chemical sedimentation and lacustrine carbonate formation

[1]  C. Rossi,et al.  Hydrochemical controls on aragonite versus calcite precipitation in cave dripwaters , 2016 .

[2]  E. Galán,et al.  Approach to the trace element geochemistry of non-marine sepiolite deposits: Influence of the sedimentary environment (Madrid Basin, Spain) , 2016 .

[3]  A. Saller,et al.  Presalt stratigraphy and depositional systems in the Kwanza Basin, offshore Angola , 2016 .

[4]  H. Vonhof,et al.  Growing spherulitic calcite grains in saline, hyperalkaline lakes: experimental evaluation of the effects of Mg-clays and organic acids , 2016 .

[5]  Pavel Gramin,et al.  Reservoir Characterization Challenges Due to the Multiscale Spatial Heterogeneity in the Presalt Carbonate Sag Formation, North Campos Basin, Brazil , 2015 .

[6]  A. Knoll,et al.  Stratigraphic evolution of the Neoproterozoic Callison Lake Formation: Linking the break-up of Rodinia to the Islay carbon isotope excursion , 2015, American Journal of Science.

[7]  N. Tosca,et al.  Diagenetic pathways linked to labile Mg-clays in lacustrine carbonate reservoirs: a model for the origin of secondary porosity in the Cretaceous pre-salt Barra Velha Formation, offshore Brazil , 2015, Special Publications.

[8]  D. Deocampo Authigenic clay minerals in lacustrine mudstones , 2015 .

[9]  M. Hall,et al.  Lacustrine carbonate reservoirs from Early Cretaceous rift lakes of Western Gondwana: Pre-Salt coquinas of Brazil and West Africa , 2015 .

[10]  S. Awramik,et al.  Giant stromatolites of the Eocene Green River Formation (Colorado, USA) , 2015 .

[11]  V. Wright,et al.  An abiotic model for the development of textures in some South Atlantic early Cretaceous lacustrine carbonates , 2015 .

[12]  M. Cusack,et al.  Aragonite-calcite seas—Quantifying the gray area , 2015 .

[13]  E. Oelkers,et al.  The experimental determination of hydromagnesite precipitation rates at 22.5 – 75°C , 2014, Mineralogical Magazine.

[14]  P. Hamilton,et al.  Stevensite in the modern thrombolites of Lake Clifton, Western Australia: A missing link in microbialite mineralization? , 2014 .

[15]  N. Tosca,et al.  Chemical controls on incipient Mg-silicate crystallization at 25°C: Implications for early and late diagenesis , 2014, Clay Minerals.

[16]  D. Sverjensky,et al.  Water in the deep Earth: The dielectric constant and the solubilities of quartz and corundum to 60 kb and 1200 °C , 2014 .

[17]  A. Navrotsky Thermodynamic Properties of Minerals , 2013 .

[18]  Martin O. Saar,et al.  DBCreate: A SUPCRT92-based program for producing EQ3/6, TOUGHREACT, and GWB thermodynamic databases at user-defined T and P , 2013, Comput. Geosci..

[19]  Keith D. Morrison,et al.  The influence of authigenic clay formation on the mineralogy and stable isotopic record of lacustrine carbonates , 2012 .

[20]  V. Wright Lacustrine carbonates in rift settings: the interaction of volcanic and microbial processes on carbonate deposition , 2012 .

[21]  Fei Wang,et al.  Precipitation of Magnesium Carbonates as a Function of Temperature, Solution Composition, and Presence of a Silicate Mineral Substrate , 2011 .

[22]  M. Krekeler,et al.  The Structures and Microtextures of the Palygorskite–Sepiolite Group Minerals , 2011 .

[23]  A. Knoll,et al.  Sedimentary talc in Neoproterozoic carbonate successions , 2010 .

[24]  L. Z. Lakshtanov,et al.  Interaction between dissolved silica and calcium carbonate: 1. Spontaneous precipitation of calcium carbonate in the presence of dissolved silica , 2010 .

[25]  P. Heaney,et al.  Synchrotron powder X-ray diffraction study of the structure and dehydration behavior of palygorskite , 2008 .

[26]  L. Gambôa,et al.  New exploratory frontiers in Brazil , 2008 .

[27]  P. Heaney,et al.  Synchrotron powder X-ray diffraction study of the structure and dehydration behavior of sepiolite , 2006 .

[28]  D. Deocampo Evaporative evolution of surface waters and the role of aqueous CO2 in magnesium silicate precipitation: Lake Eyasi and Ngorongoro Crater, northern Tanzania , 2005 .

[29]  Catherine A. Peters,et al.  Forsterite dissolution and magnesite precipitation at conditions relevant for deep saline aquifer storage and sequestration of carbon dioxide , 2005 .

[30]  H. Beucher,et al.  Reservoir Characterization , 2005 .

[31]  James R. Rustad,et al.  An Aqueous Thermodynamic Model for Polymerized Silica Species to High Ionic Strength , 2001 .

[32]  Ingvi Gunnarsson,et al.  Amorphous silica solubility and the thermodynamic properties of H4SiO°4 in the range of 0° to 350°C at Psat , 2000 .

[33]  M. Pozo,et al.  Origin of kerolite and associated Mg clays in palustrine-lacustrine environments. The Esquivias deposit (Neogene Madrid Basin, Spain) , 1999, Clay Minerals.

[34]  A. Knoll,et al.  Stromatolites in Precambrian carbonates: evolutionary mileposts or environmental dipsticks? , 1999, Annual review of earth and planetary sciences.

[35]  J. G. Ruiz Carbonate precipitation into alkaline silica-rich environments , 1998 .

[36]  L. Land Failure to Precipitate Dolomite at 25 °C fromDilute Solution Despite 1000-Fold Oversaturation after32 Years , 1998 .

[37]  A. Lasaga Kinetic theory in the earth sciences , 1998 .

[38]  J. Donald Rimstidt,et al.  QUARTZ SOLUBILITY AT LOW TEMPERATURES , 1997 .

[39]  R. A. Robie,et al.  Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (10[5] pascals) pressure and at higher temperatures , 1995 .

[40]  R. Siever The silica cycle in the Precambrian , 1992 .

[41]  J. Banfield,et al.  An AEM-TEM study of weathering and diagenesis, Abert Lake, Oregon: II. Diagenetic modification of the sedimentary assemblage , 1991 .

[42]  C. Steefel,et al.  A new kinetic approach to modeling water-rock interaction: The role of nucleation, precursors, and Ostwald ripening , 1990 .

[43]  Everett L. Shock,et al.  Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: Standard partial molal properties of organic species , 1990 .

[44]  Dumont,et al.  Saline Lakes , 1990, Developments in Hydrobiology.

[45]  Robert C. Reynolds,et al.  X-Ray Diffraction and the Identification and Analysis of Clay Minerals , 1989 .

[46]  A. Decarreau,et al.  Low-Temperature Oolitic Talc in Upper Proterozoic Rocks, Congo , 1989 .

[47]  R. K. Stoessell 25°C and 1 atm dissolution experiments of sepiolite and kerolite , 1988 .

[48]  E. Oelkers,et al.  Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: Aqueous tracer diffusion coefficients of ions to 1000°C and 5 kb , 1988 .

[49]  Y. Tardy,et al.  Authigenic trioctahedral smectites controlling pH, alkalinity, silica and magnesium concentrations in alkaline lakes , 1987 .

[50]  R. D. Krieg,et al.  Summary and Critique , 1987 .

[51]  A. Carozzi,et al.  Lagoa Feia Formation (Lower Cretaceous), Campos Basin, Offshore Brazil--Rift-Valley-Stage Lacustrine Carbonate Reservoirs: ABSTRACT , 1985 .

[52]  G. A. Parks Surface and interfacial free energies of quartz , 1984 .

[53]  J. S. Alabaster,et al.  Water Quality Criteria for Freshwater Fish , 1982 .

[54]  J. Hager Sorption of manganese and silica by clay and carbonate , 1980 .

[55]  H. Eugster,et al.  Behavior of major solutes during closed-basin brine evolution , 1979 .

[56]  R. Tettenhorst,et al.  Stevensite oolites from the Green River Formation of central Utah , 1978 .

[57]  R. E. Mesmer,et al.  Ionization equilibriums of silicic acid and polysilicate formation in aqueous sodium chloride solutions to 300.degree.C , 1977 .

[58]  Y. Tardy,et al.  Geochemical behaviour of silica and magnesium during the evaporation of waters in Chad , 1977 .

[59]  R. Mesmer,et al.  IONIZATION EQUILIBRIUMS OF SILICIC ACID AND POLYSILICATE FORMATION IN AQUEOUS SODIUM CHLORIDE SOLUTIONS TO 300°C , 1977 .

[60]  D. R. Lloyd The infrared spectra of minerals , 1975 .

[61]  T. Seward Determination of the first ionization constant of silicic acid from quartz solubility in borate buffer solutions to 350°C , 1974 .

[62]  V. Farmer The Infrared spectra of minerals , 1974 .

[63]  R. Siever,et al.  Sorption of silica by clay minerals , 1973 .

[64]  S. Shimoda Mineralogical studies of a species of stevensite from the Obori mine, Yamagata Prefecture, Japan , 1971, Clay Minerals.

[65]  J. J. Morgan,et al.  Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters , 1970 .

[66]  H. Helgeson,et al.  Thermodynamics of hydrothermal systems at elevated temperatures and pressures , 1969 .

[67]  W. T. Parry,et al.  Sepiolite from Pluvial Mound Lake, Lynn and Terry Counties, Texas , 1968 .

[68]  C. Christ,et al.  Studies in the system MgO-SiO2-CO2-H2O(I): The activity-product constant of chrysotile☆ , 1968 .

[69]  R. Garrels,et al.  Solutions, Minerals and Equilibria , 1965 .

[70]  A. E. Nielsen Kinetics of precipitation , 1964 .

[71]  M. Ross,et al.  Loughlinite, a new hydrous sodium magnesium silicate , 1960 .

[72]  J. C. Hathaway,et al.  A restudy of stevensite and allied minerals , 1959 .

[73]  J. P. Riley,et al.  The colorimetric determination of silicate with special reference to sea and natural waters , 1955 .

[74]  E. Teller,et al.  ADSORPTION OF GASES IN MULTIMOLECULAR LAYERS , 1938 .