CoSIA: an R Bioconductor package for CrOss Species Investigation and Analysis

Summary High throughput sequencing technologies have enabled cross-species comparative transcriptomic studies; however, there are numerous challenges for these studies due to biological and technical factors. We developed CoSIA (Cross-Species Investigation and Analysis), an Bioconductor R package and Shiny app that provides an alternative framework for cross-species transcriptomic comparison of non-diseased wild-type RNA sequencing gene expression data from Bgee across tissues and species (human, mouse, rat, zebrafish, fly, and nematode) through visualization of variability, diversity, and specificity metrics. Availability and Implementation https://github.com/lasseignelab/CoSIA Contact Brittany Lasseigne (bnp0001@uab.edu) Supplementary information See Supplementary Files

[1]  Brittany N. Lasseigne,et al.  Quantifying transcriptome diversity: a review. , 2023, Briefings in functional genomics.

[2]  D. Shen,et al.  PlantExp: a platform for exploration of gene expression and alternative splicing based on public plant RNA-seq samples , 2022, Nucleic Acids Res..

[3]  Seda Arat,et al.  Annotation depth confounds direct comparison of gene expression across species , 2021, BMC Bioinformatics.

[4]  Christina A. Cuomo,et al.  Best practices on the differential expression analysis of multi-species RNA-seq , 2021, Genome Biology.

[5]  T. Skerry,et al.  Cross-Species RNA-Seq Study Comparing Transcriptomes of Enriched Osteocyte Populations in the Tibia and Skull , 2020, Frontiers in Endocrinology.

[6]  S. Thomine,et al.  Wide Cross-species RNA-Seq Comparison Reveals Convergent Molecular Mechanisms Involved in Nickel Hyperaccumulation Across Dicotyledons. , 2020, The New phytologist.

[7]  Sébastien Moretti,et al.  The Bgee suite: integrated curated expression atlas and comparative transcriptomics in animals , 2020, bioRxiv.

[8]  B. Panahi,et al.  Integration of Cross Species RNA-seq Meta-Analysis and Machine-Learning Models Identifies the Most Important Salt Stress–Responsive Pathways in Microalga Dunaliella , 2019, Front. Genet..

[9]  Felipe Zapata,et al.  Pairwise comparisons across species are problematic when analyzing functional genomic data , 2018, Proceedings of the National Academy of Sciences.

[10]  E. Stupka,et al.  An RNA-Seq atlas of gene expression in mouse and rat normal tissues , 2017, Scientific Data.

[11]  Evan Bolton,et al.  Database resources of the National Center for Biotechnology Information , 2017, Nucleic Acids Res..

[12]  Andrea Komljenovic,et al.  BgeeDB, an R package for retrieval of curated expression datasets and for gene list expression localization enrichment tests , 2016, F1000Research.

[13]  K. Pruitt,et al.  P8008 The NCBI Eukaryotic Genome Annotation Pipeline , 2016 .

[14]  Dmitri D. Pervouchine,et al.  Gene-specific patterns of expression variation across organs and species , 2016, Genome Biology.

[15]  J. McPherson,et al.  Coming of age: ten years of next-generation sequencing technologies , 2016, Nature Reviews Genetics.

[16]  Daniel J. Gaffney,et al.  A survey of best practices for RNA-seq data analysis , 2016, Genome Biology.

[17]  Peter H. Sudmant,et al.  Meta-analysis of RNA-seq expression data across species, tissues and studies , 2015, Genome Biology.

[18]  F. Cui,et al.  A Computational Pipeline for Cross-Species Analysis of RNA-seq Data Using R and Bioconductor , 2015, Bioinformatics and biology insights.

[19]  W. Huber,et al.  Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 , 2014, Genome Biology.

[20]  N. Šestan,et al.  XSAnno: a framework for building ortholog models in cross-species transcriptome comparisons , 2014, BMC Genomics.

[21]  Erik Kristiansson,et al.  A novel method for cross-species gene expression analysis , 2013, BMC Bioinformatics.

[22]  Frank Stahl,et al.  Transcriptome analysis using next-generation sequencing. , 2013, Current opinion in biotechnology.

[23]  G. Tseng,et al.  Comprehensive literature review and statistical considerations for microarray meta-analysis , 2012, Nucleic acids research.

[24]  Ziv Bar-Joseph,et al.  Cross-species queries of large gene expression databases , 2010, Bioinform..

[25]  Jean Yee Hwa Yang,et al.  Comparison study of microarray meta-analysis methods , 2010, BMC Bioinformatics.

[26]  Ziv Bar-Joseph,et al.  Cross Species Expression Analysis of Innate Immune Response , 2009, J. Comput. Biol..

[27]  Octavio Martínez,et al.  Defining diversity, specialization, and gene specificity in transcriptomes through information theory , 2008, Proceedings of the National Academy of Sciences.

[28]  I. Simon,et al.  Combined analysis reveals a core set of cycling genes , 2007, Genome Biology.

[29]  Joseph Beyene,et al.  Statistical Methods for Meta-Analysis of Microarray Data: A Comparative Study , 2006, Inf. Syst. Frontiers.

[30]  B. Moor,et al.  BioMart and Bioconductor: a powerful link between biological databases and microarray data analysis , 2005, Bioinform..

[31]  Joshua M. Stuart,et al.  A Gene-Coexpression Network for Global Discovery of Conserved Genetic Modules , 2003, Science.

[32]  Ronald Aylmer Sir Fisher,et al.  224A: Answer to Question 14 on Combining independent tests of significance. , 1948 .

[33]  Z. Bar-Joseph,et al.  Bioinformatics Identifying Cycling Genes by Combining Sequence Homology and Expression Data , 2022 .