Monte Carlo Simulation of the CGMY Process and Option Pricing

We present a joint Monte Carlo‐Fourier transform sampling scheme for pricing derivative products under a Carr–Geman–Madan–Yor (CGMY) model (Carr et al. [Journal of Business, 75, 305–332, 2002]) exhibiting jumps of infinite activity and finite or infinite variation. The approach relies on numerical transform inversion with computable error estimates, which allow generating the unknown cumulative distribution function of the CGMY process increments at the desired accuracy level. We use this to generate samples and simulate the entire trajectory of the process without need of truncating the process small jumps. We illustrate the computational efficiency of the proposed method by comparing it to the existing methods in the literature on pricing a wide range of option contracts, including path‐dependent univariate and multivariate products. © 2014 Wiley Periodicals, Inc. Jrl Fut Mark 34:1095–1121, 2014

[1]  Paul Glasserman,et al.  Gamma expansion of the Heston stochastic volatility model , 2008, Finance Stochastics.

[2]  M. Yor,et al.  The Fine Structure of Asset Retums : An Empirical Investigation ' , 2006 .

[3]  R. Cont,et al.  Financial Modelling with Jump Processes , 2003 .

[4]  S. Kou,et al.  A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and its Applications in Financial Engineering , 2014, Advances in Applied Probability.

[5]  A. Cerný,et al.  An Improved Convolution Algorithm for Discretely Sampled Asian Options , 2011 .

[6]  M. Yor,et al.  Representing the CGMY and Meixner Lévy processes as time changed Brownian motions , 2008 .

[7]  P. Hughett Error Bounds for Numerical Inversion of a Probability Characteristic Function , 1998 .

[8]  Mark M. Meerschaert,et al.  Tempered stable Lévy motion and transient super-diffusion , 2010, J. Comput. Appl. Math..

[9]  S. Borovkova,et al.  Asian basket options and implied correlations in oil markets , 2007 .

[10]  San-Lin Chung,et al.  Efficient quadrature and node positioning for exotic option valuation , 2010 .

[11]  Luc Devroye,et al.  On the computer generation of random variables with a given characteristic function , 1981 .

[12]  Warren B. Powell,et al.  The Effect of Robust Decisions on the Cost of Uncertainty in Military Airlift Operations , 2011, TOMC.

[13]  Asian basket options and implied correlations in energy markets , 2010 .

[14]  J. Joseph,et al.  Fourier transforms , 2012 .

[15]  Mark Broadie,et al.  Exact Simulation of Stochastic Volatility and Other Affine Jump Diffusion Processes , 2006, Oper. Res..

[16]  Patrizia Semeraro,et al.  Multivariate time changes for Lévy asset models: Characterization and calibration , 2010, J. Comput. Appl. Math..

[17]  Ian H. Sloan,et al.  Quasi-Monte Carlo Methods in Financial Engineering: An Equivalence Principle and Dimension Reduction , 2011, Oper. Res..

[18]  Peter Tankov,et al.  Monte Carlo Option Pricing for Tempered Stable (CGMY) Processes , 2007 .

[19]  L. Ballotta,et al.  Multivariate asset models using Lévy processes and applications , 2012 .

[20]  R. Lord,et al.  A Fast and Accurate FFT-Based Method for Pricing Early-Exercise Options Under Levy Processes , 2007 .

[21]  M. Yor,et al.  Stochastic Volatility for Lévy Processes , 2003 .

[22]  Liming Feng,et al.  PRICING DISCRETELY MONITORED BARRIER OPTIONS AND DEFAULTABLE BONDS IN LÉVY PROCESS MODELS: A FAST HILBERT TRANSFORM APPROACH , 2008 .

[23]  D. Owen Handbook of Mathematical Functions with Formulas , 1965 .

[24]  J. Rosínski Tempering stable processes , 2007 .

[25]  I. S. Gradshteyn,et al.  Table of Integrals, Series, and Products , 1976 .

[26]  Cornelis W. Oosterlee,et al.  A Novel Pricing Method for European Options Based on Fourier-Cosine Series Expansions , 2008, SIAM J. Sci. Comput..

[27]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[28]  佐藤 健一 Lévy processes and infinitely divisible distributions , 2013 .

[29]  Xiong Lin,et al.  Simulating Lévy Processes from Their Characteristic Functions and Financial Applications , 2011, TOMC.

[30]  Hiroki Masuda,et al.  On simulation of tempered stable random variates , 2010, J. Comput. Appl. Math..

[31]  Paul Glasserman,et al.  Sensitivity estimates from characteristic functions , 2007, 2007 Winter Simulation Conference.