Topological material layout in plates for vibration suppression and wave propagation control

We propose a topological material layout method to design elastic plates with optimized properties for vibration suppression and guided transport of vibration energy. The gradient-based optimization algorithm is based on a finite element model of the plate vibrations obtained using the Mindlin plate theory coupled with analytical sensitivity analysis using the adjoint method and an iterative design update procedure based on a mathematical programming tool. We demonstrate the capability of the method by designing bi-material plates that, when subjected to harmonic excitation, either effectively suppress the overall vibration level or alternatively transport energy in predefined paths in the plates, including the realization of a ring wave device.

[1]  Jakob Søndergaard Jensen,et al.  Topology optimization of dynamics problems with Padé approximants , 2007 .

[2]  Steven J. Cox,et al.  Maximizing Band Gaps in Two-Dimensional Photonic Crystals , 1999, SIAM J. Appl. Math..

[3]  Ole Sigmund,et al.  Systematic design of phononic band–gap materials and structures by topology optimization , 2003, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[4]  B. Auld,et al.  Acoustic fields and waves in solids , 1973 .

[5]  Jakob Søndergaard Jensen,et al.  Topology optimization problems for reflection and dissipation of elastic waves , 2007 .

[6]  Kurt Maute,et al.  Design of phononic materials/structures for surface wave devices using topology optimization , 2007 .

[7]  K. Svanberg The method of moving asymptotes—a new method for structural optimization , 1987 .

[8]  M. Bendsøe,et al.  Topology Optimization: "Theory, Methods, And Applications" , 2011 .

[9]  M. Bendsøe,et al.  Generating optimal topologies in structural design using a homogenization method , 1988 .

[10]  N. Kikuchi,et al.  Topological design for vibrating structures , 1995 .

[11]  Ole Sigmund,et al.  Inverse design of phononic crystals by topology optimization , 2005 .

[12]  K. Svanberg,et al.  An alternative interpolation scheme for minimum compliance topology optimization , 2001 .

[13]  Niels Olhoff,et al.  Minimization of sound radiation from vibrating bi-material structures using topology optimization , 2007 .

[14]  Jakob S. Jensen,et al.  Topology optimization of photonic crystal structures: a high-bandwidth low-loss T-junction waveguide , 2005 .

[15]  James K. Guest,et al.  Achieving minimum length scale in topology optimization using nodal design variables and projection functions , 2004 .

[16]  Richard A. Scott,et al.  Dispersive elastodynamics of 1D banded materials and structures: Design , 2007 .

[17]  御子柴宣夫 B. A. Auld : Acoustic Fields and Waves in Solids, Vol. 1 and 2, John Wiley, New York and London, 1973, 2 vols., 23.5×16cm. , 1974 .

[18]  Kenji Uchino Piezoelectric ultrasonic motors: overview , 1998 .

[19]  C. Jog Topology design of structures subjected to periodic loading , 2002 .

[20]  Jakob S. Jensen,et al.  Maximizing band gaps in plate structures , 2006 .

[21]  O. Sigmund Morphology-based black and white filters for topology optimization , 2007 .