Dynamic chiral cyclohexanohemicucurbit[12]uril.

NMR spectroscopy and DFT modeling studies of chiral cyclohexanohemicucurbit[12]uril indicate that the macrocycle adopts a concave octagonal shape with two distinct conformational flexibilities in solution. Methylene bridge flipping occurs at temperatures above 265 K, while urea monomers rotate at temperatures above 308 K, resulting in the loss of confined space within the macrocycle.

[1]  Mark W. H. Hoorens,et al.  Iminothioindoxyl as a molecular photoswitch with 100 nm band separation in the visible range , 2019, Nature Communications.

[2]  W. Zimmermann,et al.  Large-Ring Cyclodextrins as Chiral Selectors for Enantiomeric Pharmaceuticals. , 2019, Angewandte Chemie.

[3]  T. Tamm,et al.  Formation and trapping of the thermodynamically unfavoured inverted-hemicucurbit[6]uril. , 2019, Chemical communications.

[4]  D. Gigmes,et al.  The synthesis and characterization of giant Calixarenes , 2019, Nature Communications.

[5]  T. Friščić,et al.  Size-Control by Anion Templating in Mechanochemical Synthesis of Hemicucurbiturils in the Solid State. , 2018, Angewandte Chemie.

[6]  Kristina Eriksen,et al.  Hemicucurbit[n]urils and Their Derivatives – Synthesis and Applications , 2018 .

[7]  V. Šindelář,et al.  Bambusuril Anion Receptors , 2018 .

[8]  M. Iron Evaluation of the Factors Impacting the Accuracy of 13C NMR Chemical Shift Predictions using Density Functional Theory-The Advantage of Long-Range Corrected Functionals. , 2017, Journal of chemical theory and computation.

[9]  Tânia Cova,et al.  Properties and patterns in anion-receptors: A closer look at bambusurils , 2017 .

[10]  V. Šindelář,et al.  Modulation of Bambusuril Anion Affinity in Water. , 2017, Chemistry.

[11]  W. Zimmermann,et al.  High-affinity host-guest chemistry of large-ring cyclodextrins. , 2016, Organic & biomolecular chemistry.

[12]  L. Lindoy,et al.  Twisted Cucurbit[n]urils. , 2016, Organic letters.

[13]  Li Shao,et al.  A Dual-Thermoresponsive Gemini-Type Supra-amphiphilic Macromolecular [3]Pseudorotaxane Based on Pillar[10]arene/Paraquat Cooperative Complexation. , 2016, Journal of the American Chemical Society.

[14]  Riina Aav,et al.  Computational Study of Cyclohexylhemicucurbiturils , 2015 .

[15]  T. Tamm,et al.  Template-controlled synthesis of chiral cyclohexylhemicucurbit[8]uril. , 2015, Chemical communications.

[16]  A. P. Davis,et al.  Biotin[6]uril Esters: Chloride-Selective Transmembrane Anion Carriers Employing C-H···Anion Interactions. , 2015, Journal of the American Chemical Society.

[17]  S. Sauer,et al.  Anion binding by biotin[6]uril in water. , 2015, Organic & biomolecular chemistry.

[18]  V. Šindelář,et al.  A bambusuril macrocycle that binds anions in water with high affinity and selectivity. , 2015, Angewandte Chemie.

[19]  I. Järving,et al.  New homologues of chiral cyclohexylhemicucurbit[n]urils , 2014 .

[20]  T. Tamm,et al.  Computational and ion mobility MS study of (all-S)-cyclohexylhemicucurbit[6]uril structure and complexes. , 2014, Physical chemistry chemical physics : PCCP.

[21]  A. Madsen,et al.  Discovery of a cyclic 6 + 6 hexamer of D-biotin and formaldehyde , 2014 .

[22]  V. Šindelář,et al.  Synthesis of Norbornahemicucurbiturils , 2013 .

[23]  K. Rissanen,et al.  New chiral cyclohexylhemicucurbit[6]uril. , 2013, Organic letters.

[24]  Yunqian Zhang,et al.  Twisted cucurbit[14]uril. , 2013, Angewandte Chemie.

[25]  Zhan-Ting Li,et al.  Pillar[n]arenes (n = 8-10) with two cavities: synthesis, structures and complexing properties. , 2012, Chemical communications.

[26]  M. Wimmerová,et al.  Bambus[n]urils: a new family of macrocyclic anion receptors. , 2011, Organic letters.

[27]  J. Švec,et al.  Bambus[6]uril. , 2010, Angewandte Chemie.

[28]  Xiang-gao Meng,et al.  Solvent Effect on Pseudopolymorphism of Hemicyclohexylcucurbit[6]uril , 2009 .

[29]  M. Gotsev,et al.  Large-ring cyclodextrins. A molecular dynamics study of the conformational dynamics and energetics of CD10, CD14 and CD26 , 2007 .

[30]  P. Zavalij,et al.  Nor-seco-cucurbit[10]uril exhibits homotropic allosterism. , 2006, Journal of the American Chemical Society.

[31]  H. Nagase,et al.  Isolation, Purification and Characterization of Large-Ring Cyclodextrins (CD36∼ ∼CD39) , 2006 .

[32]  L. Cronin,et al.  Synthesis, structure, and complexation of a large 28-mer macrocycle containing two binding sites for either anions or metal ions. , 2004, Inorganic chemistry.

[33]  Y. Miyahara,et al.  Remarkably facile ring-size control in macrocyclization: synthesis of hemicucurbit[6]uril and hemicucurbit[12]uril. , 2004, Angewandte Chemie.

[34]  I. Dumazet-Bonnamour,et al.  Large Calixarenes: Structure and Conformation of a Calix[16]arene Complexed with Neutral Molecules , 2001 .

[35]  Stoddart,et al.  Artificial Molecular Machines. , 2000, Angewandte Chemie.

[36]  Eunsung Lee,et al.  New Cucurbituril Homologues: Syntheses, Isolation, Characterization, and X-ray Crystal Structures of Cucurbit[n]uril (n = 5, 7, and 8) , 2000 .

[37]  G. Sheldrick,et al.  V-Amylose at atomic resolution: X-ray structure of a cycloamylose with 26 glucose residues (cyclomaltohexaicosaose). , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[38]  Thomas Steiner,et al.  Structures of the Common Cyclodextrins and Their Larger Analogues-Beyond the Doughnut. , 1998, Chemical reviews.

[39]  K. Harata,et al.  X-Ray Structure of i-Cyclodextrin , 1998 .

[40]  Wolfram Saenger,et al.  Strain-Induced "Band Flips" in Cyclodecaamylose and Higher Homologues. , 1998, Angewandte Chemie.