The Momentum Map Representation of Images

This paper discusses the mathematical framework for designing methods of Large Deformation Diffeomorphic Matching (LDM) for image registration in computational anatomy. After reviewing the geometrical framework of LDM image registration methods, we prove a theorem showing that these methods may be designed by using the actions of diffeomorphisms on the image data structure to define their associated momentum representations as (cotangent-lift) momentum maps. To illustrate its use, the momentum map theorem is shown to recover the known algorithms for matching landmarks, scalar images, and vector fields. After briefly discussing the use of this approach for diffusion tensor (DT) images, we explain how to use momentum maps in the design of registration algorithms for more general data structures. For example, we extend our methods to determine the corresponding momentum map for registration using semidirect product groups, for the purpose of matching images at two different length scales. Finally, we discuss the use of momentum maps in the design of image registration algorithms when the image data is defined on manifolds instead of vector spaces.

[1]  Darryl D. Holm,et al.  Hamiltonian Approach to Shape Spaces in a Diffeomorphic Framework : from the Discontinuous Image Matching Problem to a Stochastic Growth Model , 2009 .

[2]  Michael I. Miller,et al.  Diffeomorphic Matching of Diffusion Tensor Images , 2006, 2006 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW'06).

[3]  Ruzena Bajcsy,et al.  Strategies for Data Reorientation during Non-rigid Warps of Diffusion Tensor Images , 1999, MICCAI.

[4]  Alain Trouvé,et al.  Local Geometry of Deformable Templates , 2005, SIAM J. Math. Anal..

[5]  Darryl D. Holm,et al.  The Euler–Poincaré Equations and Semidirect Products with Applications to Continuum Theories , 1998, chao-dyn/9801015.

[6]  R. Winslow,et al.  Histological validation of myocardial microstructure obtained from diffusion tensor magnetic resonance imaging. , 1998, The American journal of physiology.

[7]  T. Ratiu,et al.  Momentum Maps and Hamiltonian Reduction , 2003 .

[8]  Michael I. Miller,et al.  Large deformation diffeomorphic metric mapping of vector fields , 2005, IEEE Transactions on Medical Imaging.

[9]  Alain Trouvé,et al.  Geodesic Shooting for Computational Anatomy , 2006, Journal of Mathematical Imaging and Vision.

[10]  Marc Niethammer,et al.  An optimal control approach for deformable registration , 2009, 2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.

[11]  J. Marsden,et al.  The Reduced Euler-Lagrange Equations , 1993 .

[12]  Paul Dupuis,et al.  Variational problems on ows of di eomorphisms for image matching , 1998 .

[13]  Michael I. Miller,et al.  Evolutions equations in computational anatomy , 2009, NeuroImage.

[14]  Daniel Rueckert,et al.  Simultaneous Fine and Coarse Diffeomorphic Registration: Application to Atrophy Measurement in Alzheimer's Disease , 2010, MICCAI.

[15]  J. Marsden,et al.  Introduction to mechanics and symmetry , 1994 .

[16]  Brian B. Avants,et al.  Symmetric diffeomorphic image registration with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain , 2008, Medical Image Anal..

[17]  James C. Gee,et al.  Spatial transformations of diffusion tensor magnetic resonance images , 2001, IEEE Transactions on Medical Imaging.

[18]  L. Younes,et al.  On the metrics and euler-lagrange equations of computational anatomy. , 2002, Annual review of biomedical engineering.

[19]  K. Conrad,et al.  Group Actions , 2018, Cyber Litigation: The Legal Principles.

[20]  P. Basser,et al.  Diffusion tensor MR imaging of the human brain. , 1996, Radiology.

[21]  Joan Alexis Glaunès Transport par difféomorphismes de points, de mesures et de courants pour la comparaison de formes et l'anatomie numérique , 2005 .

[22]  Alain Trouvé,et al.  Metamorphoses Through Lie Group Action , 2005, Found. Comput. Math..

[23]  Jerrold E. Marsden,et al.  The Breadth of Symplectic and Poisson Geometry , 2007 .

[24]  L. Younes Shapes and Diffeomorphisms , 2010 .

[25]  Darryl D. Holm,et al.  Momentum maps and measure-valued solutions (peakons, filaments, and sheets) for the EPDiff equation , 2003, nlin/0312048.

[26]  Darryl D. Holm Book Review: Geometric Mechanics, Part II: Rotating, Translating and Rolling , 2008 .

[27]  Ralph Abraham,et al.  Foundations Of Mechanics , 2019 .

[28]  Alain Trouvé,et al.  Diffeomorphisms Groups and Pattern Matching in Image Analysis , 1998, International Journal of Computer Vision.

[29]  D'arcy W. Thompson On growth and form i , 1943 .

[30]  Michael I. Miller,et al.  Group Actions, Homeomorphisms, and Matching: A General Framework , 2004, International Journal of Computer Vision.

[31]  Michael I. Miller,et al.  Landmark matching via large deformation diffeomorphisms , 2000, IEEE Trans. Image Process..

[32]  Alain Trouvé,et al.  Computing Large Deformation Metric Mappings via Geodesic Flows of Diffeomorphisms , 2005, International Journal of Computer Vision.

[33]  Laurent Younes,et al.  Invariance, déformations et reconnaissance de formes , 2004 .

[34]  Alain Trouvé,et al.  The Euler-Poincare theory of Metamorphosis , 2008, ArXiv.

[35]  Ali R. Khan,et al.  Symmetric Data Attachment Terms for Large Deformation Image Registration , 2007, IEEE Transactions on Medical Imaging.

[36]  Darryl D. Holm,et al.  Soliton dynamics in computational anatomy , 2004, NeuroImage.

[37]  J. Craggs Applied Mathematical Sciences , 1973 .