THE MOLECULAR GAS IN LUMINOUS INFRARED GALAXIES. II. EXTREME PHYSICAL CONDITIONS AND THEIR EFFECTS ON THE Xco FACTOR

In this work, we conclude the analysis of our CO line survey of luminous infrared galaxies (LIRGs: LIR ≳ 1011 L☉) in the local universe (Paper I) by focusing on the influence of their average interstellar medium (ISM) properties on the total molecular gas mass estimates via the so-called Xco = M(H2)/Lco, 1–0 factor. One-phase radiative transfer models of the global CO spectral line energy distributions (SLEDs) yield an Xco distribution with 〈Xco〉 ∼ (0.6 ± 0.2) M☉ (K km s−1 pc2)−1 over a significant range of average gas densities, temperatures, and dynamic states. The latter emerges as the most important parameter in determining Xco, with unbound states yielding low values and self-gravitating states yielding the highest ones. Nevertheless, in many (U)LIRGs where available higher-J CO lines (J = 3–2, 4–3, and/or J = 6–5) or HCN line data from the literature allow a separate assessment of the gas mass at high densities (⩾104 cm−3) rather than a simple one-phase analysis, we find that near-Galactic Xco ∼ (3–6) M☉ (K km s−1 pc2)−1 values become possible. We further show that in the highly turbulent molecular gas in ULIRGs, a high-density component will be common and can be massive enough for its high Xco to dominate the average value for the entire galaxy. Using solely low-J CO lines to constrain Xco in such environments (as has been the practice up until now) may have thus resulted in systematic underestimates of molecular gas mass in ULIRGs, as such lines are dominated by a warm, diffuse, and unbound gas phase with low Xco but very little mass. Only well-sampled high-J CO SLEDs (J = 3–2 and higher) and/or multi-J observations of heavy rotor molecules (e.g., HCN) can circumvent such a bias, and the latter type of observations may have actually provided early evidence of it in local ULIRGs. The only way that the global Xco of such systems could be significantly lower than Galactic is if the average dynamic state of the dense gas is strongly gravitationally unbound. This is an unlikely possibility that must nevertheless be examined, with lines of rare isotopologues of high gas density tracers (e.g., H13CN, high-J 13CO lines) being very valuable in yielding (along with the lines of the main isotopes) such constraints. For less IR-luminous, disk-dominated systems, we find that the galaxy-averaged Xco deduced by one-phase models of global SLEDs can also underestimate the total molecular gas mass when much of it lies in an star-formation-quiescent phase extending beyond a central star-forming region. This is because such a phase (and its large Xco) remains inconspicuous in global CO SLEDs. Finally, detailed studies of a subsample of galaxies find ULIRGs with large amounts (∼109 M☉) of very warm (⩾100 K) and dense gas (≳105 cm−3), which could represent a serious challenge to photon-dominated regions as the main energy portals in the molecular ISM of such systems.

[1]  S. García-Burillo,et al.  Star-formation laws in luminous infrared galaxies. New observational constraints on models , 2011, 1111.6773.

[2]  P. Cox,et al.  THE INTERSTELLAR MEDIUM IN DISTANT STAR-FORMING GALAXIES: TURBULENT PRESSURE, FRAGMENTATION, AND CLOUD SCALING RELATIONS IN A DENSE GAS DISK AT z = 2.3 , 2011, 1110.2780.

[3]  P. D. Werf,et al.  The molecular gas in Luminous Infrared Galaxies I: CO lines, extreme physical conditions, and their drivers , 2011, 1109.4176.

[4]  Christine D. Wilson,et al.  OBSERVATIONS OF Arp 220 USING HERSCHEL-SPIRE: AN UNPRECEDENTED VIEW OF THE MOLECULAR GAS IN AN EXTREME STAR FORMATION ENVIRONMENT , 2011, 1106.5054.

[5]  E. Ostriker,et al.  The CO-H2 Conversion Factor in Disc Galaxies and Mergers , 2011, 1104.4118.

[6]  R. Klessen,et al.  Modelling CO emission – II. The physical characteristics that determine the X factor in Galactic molecular clouds , 2011, 1104.3695.

[7]  B. Andrews,et al.  ASSESSING RADIATION PRESSURE AS A FEEDBACK MECHANISM IN STAR-FORMING GALAXIES , 2010, 1011.0955.

[8]  R. Meijerink,et al.  Star formation in extreme environments: the effects of cosmic rays and mechanical heating , 2010, 1010.0788.

[9]  R. Klessen,et al.  Modelling CO emission – I. CO as a column density tracer and the X factor in molecular clouds , 2010, 1011.2019.

[10]  P. Papadopoulos A COSMIC-RAY-DOMINATED INTERSTELLAR MEDIUM IN ULTRA LUMINOUS INFRARED GALAXIES: NEW INITIAL CONDITIONS FOR STAR FORMATION , 2010, 1009.1134.

[11]  G. Savini,et al.  Black hole accretion and star formation as drivers of gas excitation and chemistry in Markarian 231 , 2010, 1005.2877.

[12]  P. P. van der Werf,et al.  CO SPECTRAL LINE ENERGY DISTRIBUTIONS OF INFRARED-LUMINOUS GALAXIES AND ACTIVE GALACTIC NUCLEI , 2010, 1003.5889.

[13]  B. Weiner,et al.  A study of the gas–star formation relation over cosmic time , 2010, 1003.5180.

[14]  D. Elbaz,et al.  DIFFERENT STAR FORMATION LAWS FOR DISKS VERSUS STARBURSTS AT LOW AND HIGH REDSHIFTS , 2010, 1003.3889.

[15]  P. P. van der Werf,et al.  CO J = 6–5 IN Arp 220: STRONG EFFECTS OF DUST ON HIGH-J CO LINES , 2010, 1001.3653.

[16]  R. Klessen,et al.  Probing high-redshift quasars with ALMA. I. Expected observables and potential number of sources , 2010, 1001.2118.

[17]  D. Elbaz,et al.  VERY HIGH GAS FRACTIONS AND EXTENDED GAS RESERVOIRS IN z = 1.5 DISK GALAXIES , 2009, 0911.2776.

[18]  J. Moustakas,et al.  ENHANCED DENSE GAS FRACTION IN ULTRALUMINOUS INFRARED GALAXIES , 2009, 0911.0413.

[19]  Ute Lisenfeld,et al.  TRACING MOLECULAR GAS MASS IN EXTREME EXTRAGALACTIC ENVIRONMENTS: AN OBSERVATIONAL STUDY , 2009, 0908.1600.

[20]  D. Elbaz,et al.  LOW MILKY-WAY-LIKE MOLECULAR GAS EXCITATION OF MASSIVE DISK GALAXIES AT z ∼ 1.5 , 2009, 0905.3637.

[21]  Christine D. Wilson,et al.  LUMINOUS INFRARED GALAXIES WITH THE SUBMILLIMETER ARRAY. II. COMPARING THE CO (3–2) SIZES AND LUMINOSITIES OF LOCAL AND HIGH-REDSHIFT LUMINOUS INFRARED GALAXIES , 2009, 0902.0121.

[22]  Simon J. E. Radford,et al.  MOLECULAR GAS IN EXTREME STAR-FORMING ENVIRONMENTS: THE STARBURSTS Arp 220 AND NGC 6240 AS CASE STUDIES , 2006, astro-ph/0610378.

[23]  A. Evans,et al.  High-excitation molecular gas in local luminous AGN hosts , 2008, 0809.4971.

[24]  Christine D. Wilson,et al.  Luminous Infrared Galaxies with the Submillimeter Array. I. Survey Overview and the Central Gas to Dust Ratio , 2008, 0806.3002.

[25]  Qizhou Zhang,et al.  Submillimeter Array Imaging of the CO(3-2) Line and 860 μm Continuum of Arp 220: Tracing the Spatial Distribution of Luminosity , 2008, 0806.0217.

[26]  A. Cimatti,et al.  Submillimeter Galaxies at z ~ 2: Evidence for Major Mergers and Constraints on Lifetimes, IMF, and CO-H2 Conversion Factor , 2008, 0801.3650.

[27]  R. Neri,et al.  A Multi-Transition HCN and HCO+ Study of 12 Nearby Active Galaxies: Active Galactic Nucleus versus Starburst Environments , 2007, 0712.0319.

[28]  University of Hertfordshire,et al.  Evidence of enhanced star formation efficiency in luminous and ultraluminous infrared galaxies , 2007, 0712.0582.

[29]  P. P. van der Werf,et al.  First CO J = 6-5 and J = 4-3 Detections in Local ULIRGs: The Dense Gas in Markarian 231 and Its Cooling Budget , 2007, 0706.0811.

[30]  D. Iono,et al.  High-Resolution Imaging of Warm and Dense Molecular Gas in the Nuclear Region of the Luminous Infrared Galaxy NGC 6240 , 2007, astro-ph/0701123.

[31]  P. Papadopoulos HCN versus HCO+ as Dense Molecular Gas Mass Tracers in Luminous Infrared Galaxies , 2006, astro-ph/0610477.

[32]  W. Wall Rethinking the N(H2)/I(CO) conversion factor , 2006, astro-ph/0610209.

[33]  M. Dadina BeppoSAX observations in the 2–100 keV band of the nearby Seyfert galaxies: an atlas of spectra , 2007 .

[34]  R. Riffel,et al.  A 0.8-2.4 μm spectral atlas of active galactic nuclei , 2006, astro-ph/0605463.

[35]  The Jet and Circumnuclear Environment of 3C 293 , 2005, astro-ph/0510853.

[36]  P. Solomon,et al.  Connecting Dense Gas Tracers of Star Formation in our Galaxy to High-z Star Formation , 2005, astro-ph/0511424.

[37]  F. Bertoldi,et al.  High-Resolution Millimeter Imaging of Submillimeter Galaxies , 2005 .

[38]  A. Weiss,et al.  The Spectral Energy Distribution of CO lines in M82 , 2005, astro-ph/0504377.

[39]  L. Colina,et al.  Kinematics of Low-z Ultraluminous Infrared Galaxies and Implications for Dynamical Mass Derivations in High-z Star-forming Galaxies , 2005 .

[40]  Edinburgh,et al.  An interferometric CO survey of luminous submillimetre galaxies , 2005, astro-ph/0503055.

[41]  E. Quataert,et al.  Radiation Pressure-supported Starburst Disks and Active Galactic Nucleus Fueling , 2005, astro-ph/0503027.

[42]  S. Hüttemeister,et al.  The Neutral ISM in Starburst Galaxies , 2004 .

[43]  D. A. Green,et al.  The distribution of atomic gas and dust in nearby galaxies – III. Radial distributions and metallicity gradients , 2004 .

[44]  P. Alexander,et al.  A high‐resolution study of the interstellar medium in the luminous IRAS galaxy Arp 193 , 2004 .

[45]  A. Eckart,et al.  Resolving the Host Galaxy of the Nearby QSO I Zw 1 with Subarcsecond Multitransition Molecular Line Observations , 2004, astro-ph/0403538.

[46]  D. Iono,et al.  High-Density Molecular Gas in the Infrared-bright Galaxy System VV 114 , 2004, astro-ph/0403429.

[47]  T. Hattori,et al.  A Study of the Distribution of Star-forming Regions in Luminous Infrared Galaxies by Means of Hα Imaging Observations , 2003, astro-ph/0311179.

[48]  P. Solomon,et al.  HCN Survey of Normal Spiral, Infrared-luminous, and Ultraluminous Galaxies , 2003, astro-ph/0310341.

[49]  T. Nakagawa,et al.  X-Ray Evidence of a Buried Active Galactic Nucleus in UGC 5101 , 2003, astro-ph/0309425.

[50]  D. Jaffe,et al.  A CS J = 5 → 4 Mapping Survey Toward High-Mass Star-forming Cores Associated with Water Masers , 2003, astro-ph/0308310.

[51]  J. Surace,et al.  The IRAS Revised Bright Galaxy Sample , 2003, astro-ph/0306263.

[52]  A. Bolatto,et al.  Unusual CO Line Ratios and Kinematics in the N83/N84 Region of the Small Magellanic Cloud , 2003, astro-ph/0306144.

[53]  D. Clements,et al.  Starburst and AGN activity in ultraluminous infrared galaxies , 2003, astro-ph/0304154.

[54]  L. Dunne,et al.  CO Molecular Gas in Infrared-luminous Galaxies , 2003, astro-ph/0301511.

[55]  P. Martini,et al.  Circumnuclear Dust in Nearby Active and Inactive Galaxies. I. Data , 2002, astro-ph/0212396.

[56]  A. Evans,et al.  Molecular Gas and Nuclear Activity in Ultraluminous Infrared Galaxies with Double Nuclei , 2002, astro-ph/0208541.

[57]  V. Ossenkopf Molecular line emission from turbulent clouds , 2002 .

[58]  M. Tecza,et al.  Ultraluminous Infrared Galaxies: QSOs in Formation? , 2002, astro-ph/0207405.

[59]  S. Veilleux,et al.  Optical and Near-Infrared Imaging of the IRAS 1 Jy Sample of Ultraluminous Infrared Galaxies. II. The Analysis , 2002, astro-ph/0207373.

[60]  E. McGrath,et al.  Circumnuclear Star Formation in the Spiral Galaxy NGC 3310 , 2002 .

[61]  C. University,et al.  Resolving the Buried Starburst in Arp 299 , 2002, astro-ph/0201278.

[62]  T. Boller,et al.  Chandra Observations of Markarian 273: Unveiling the Central Active Galactic Nucleus and the Extended Hot Gas Halo , 2001, astro-ph/0107559.

[63]  R. Sancisi,et al.  NGC 3310, a galaxy merger? , 2001, astro-ph/0106439.

[64]  M. Tecza,et al.  Ultraluminous Infrared Mergers: Elliptical Galaxies in Formation? , 2001, astro-ph/0106032.

[65]  M. Dumke,et al.  Warm gas in central regions of nearby galaxies. Extended mapping of CO(3-2) emission , 2001, astro-ph/0105242.

[66]  A. Weiss,et al.  The Effect of Violent Star Formation on the State of the Molecular Gas in M 82 , 2000, astro-ph/0010541.

[67]  S. Veilleux The Starburst-AGN Connection , 2000, astro-ph/0012121.

[68]  P. Padoan,et al.  The Stellar Initial Mass Function from Turbulent Fragmentation , 2000, astro-ph/0011465.

[69]  M. Regan Overluminous CO in the Central Regions of Spiral Galaxies , 2000 .

[70]  P. Papadopoulos,et al.  Gas and Dust in NGC 7469: Submillimeter Imaging and CO J = 3-2 , 2000, astro-ph/0002277.

[71]  D. Clements,et al.  The SCUBA Local Universe Galaxy Survey — I. First measurements of the submillimetre luminosity and dust mass functions , 2000, astro-ph/0002234.

[72]  M. Rieke,et al.  NICMOS Imaging of Infrared-Luminous Galaxies , 1999, astro-ph/9912246.

[73]  Surace,et al.  Resolved CO (1 --> 0) Nuclei in IRAS 14348-1447: Evidence for Massive Bulge Progenitors to Ultraluminous Infrared Galaxies. , 1999, The Astrophysical journal.

[74]  J. Surace,et al.  High Resolution Mid-Infrared Imaging of Ultraluminous Infrared Galaxies* , 1999, astro-ph/9911045.

[75]  A. Kinney,et al.  Panchromatic Study of Nearby Ultraviolet-bright Starburst Galaxies: Implications for Massive Star Formation and High-Redshift Galaxies , 1999, astro-ph/9910382.

[76]  A. Evans,et al.  High-Resolution Optical/Near-Infrared Imaging of Cool Ultraluminous Infrared Galaxies , 1999, astro-ph/9909085.

[77]  Y. Sekimoto,et al.  Shocked Molecular Gas Associated with the Supernova Remnant W28 , 1999 .

[78]  N. Scoville,et al.  High-Resolution CO Observations of Luminous Infrared Galaxies , 1999 .

[79]  M. Tecza,et al.  Gasdynamics in the Luminous Merger NGC 6240 , 1999, astro-ph/9905031.

[80]  J. Hibbard,et al.  ACCEPTED FOR PUBLICATION IN THE ASTRONOMICAL JOURNAL Preprint typeset using L ATEX style emulateapj GENETIC-ALGORITHM-BASED LIGHT CURVE OPTIMIZATION APPLIED TO OBSERVATIONS OF THE , 1999 .

[81]  E. Seaquist,et al.  The State of the Molecular Gas in a Luminous Starburst/Seyfert 2 Galaxy: NGC 1068 Revisited , 1999, astro-ph/9901394.

[82]  A. Evans,et al.  Molecular Gas in 3C 293: The First Detection of CO Emission and Absorption in a Fanaroff-Riley Type II Radio Galaxy , 1998, astro-ph/9810159.

[83]  P. Solomon,et al.  Rotating Nuclear Rings and Extreme Starbursts in Ultraluminous Galaxies , 1998, astro-ph/9806377.

[84]  C. Leitherer,et al.  Ultraviolet-Optical Observations of the Seyfert 2 Galaxies NGC 7130, NGC 5135, and IC 3639: Implications for the Starburst-Active Galactic Nucleus Connection , 1998, astro-ph/9806107.

[85]  E. Seaquist,et al.  Physical Conditions of the Molecular Gas in Seyfert Galaxies , 1998 .

[86]  A. Eckart,et al.  Molecular Gas and Star Formation in the Host Galaxy of the QSO I Zw 1 , 1998, astro-ph/9801061.

[87]  M. Hayashi,et al.  Enhanced CO J = 2-1/J = 1-0 Ratio as a Marker of Supernova Remnant-Molecular Cloud Interactions: The Cases of W44 and IC 443 , 1998 .

[88]  Joseph M. Mazzarella,et al.  HST/WFPC2 Observations of Warm Ultraluminous Infrared Galaxies , 1998 .

[89]  R. Guesten,et al.  Galactic Center molecular clouds , 2004, astro-ph/0402019.

[90]  G. Rieke,et al.  Molecular Gas, Morphology, and Seyfert Galaxy Activity , 1997 .

[91]  J. Jackson,et al.  The Average Properties of the Dense Molecular Gas in Galaxies , 1997 .

[92]  R. Doyon,et al.  Spectroscopy of Luminous Infrared Galaxies at 2 Microns. II. Data for Galaxies with 11.2 ≲ log (LIR/L☉) ≲ 11.9 , 1997 .

[93]  Simon J. E. Radford,et al.  Variation of Molecular Line Ratios and Cloud Properties in the Arp 299 Galaxy Merger , 1997, astro-ph/9701005.

[94]  Simon J. E. Radford,et al.  The Molecular Interstellar Medium in Ultraluminous Infrared Galaxies , 1996, astro-ph/9610166.

[95]  D. Sanders,et al.  LUMINOUS INFRARED GALAXIES , 1996 .

[96]  S. Sakamoto Effects of molecular cloud properties on the CO-to-H2 conversion factor. , 1996 .

[97]  G. Helou,et al.  A 1.425 GHz Atlas of the IRAS Bright Galaxy Sample, Part II , 1996 .

[98]  G. Neugebauer,et al.  Visual and Near-Infrared Imaging of Ultraluminous Infrared Galaxies: The IRAS 2 Jy Sample , 1996 .

[99]  N. Scoville,et al.  High-Resolution CO Observations of the Ultraluminous Infrared Galaxy Markarian 231 , 1996 .

[100]  R. Genzel,et al.  Kinematics and Distribution of Molecular Gas in Galaxy Nuclei , 1996 .

[101]  Alfred Krabbe,et al.  Infrared Imaging and Spectroscopy of NGC 7469 , 1995 .

[102]  James Lequeux,et al.  Physical Properties of Molecular Clouds in the Inner Disk of M31 , 1995 .

[103]  S. Veilleux,et al.  Optical Spectroscopy of Luminous Infrared Galaxies II. Analysis of the Nuclear and long-Slit Data , 1995 .

[104]  C. Beichman,et al.  The luminous starburst galaxy UGC 8387 , 1995 .

[105]  J. Carlstrom,et al.  Submillimeter HCN and HCO + Emission from Galaxies , 1995 .

[106]  Y. Taniguchi,et al.  (12)CO (3-2) & (1-0) emission line observations of nearby starburst galaxy nuclei , 1994 .

[107]  Tetsuo Hasegawa,et al.  A large area CO (J = 2-1) mapping of the giant molecular clouds in Orion , 1994 .

[108]  A. Eckart,et al.  INTERSTELLAR MEDIUM AND STAR FORMATION IN THE NEARBY QSO I ZW 1 , 1994 .

[109]  Simon J. E. Radford,et al.  Molecular gas mass and far-infrared emission from distant luminous galaxies , 1993 .

[110]  Y. Taniguchi,et al.  (C-12)O (J = 1-0) mapping of the merging galaxy NGC 3310 , 1993 .

[111]  R. Allen,et al.  Detection of CO emission from massive molecular clouds in the inner disk of M31 , 1993 .

[112]  Eugene Serabyn,et al.  First Measurements of Extragalactic CO(4--3) , 1993 .

[113]  A. Tielens,et al.  CO(J = 1-0) line emission from giant molecular clouds , 1993 .

[114]  M. Hereld,et al.  Subarcsecond near-infrared imaging of ultraluminous IRAS galaxies , 1993 .

[115]  Simon J. E. Radford,et al.  Dense Molecular Gas and Starbursts in Ultraluminous Galaxies , 1992 .

[116]  T. Thuan,et al.  Compact starbursts in ultraluminous infrared galaxies , 1991 .

[117]  B. Soifer,et al.  Molecular gas in luminous infrared galaxies , 1991 .

[118]  D. Sanders,et al.  High-Resolution CO Observations of Luminous Infrared Galaxies with Large L ir/ L B Ratios: IRAS 10173+0828, ZW 049.057, IRAS 17208-0014 , 1991 .

[119]  N. Scoville,et al.  Millimeter interferometer observations of infrared luminous galaxies - NGC 828 and NGC 6240 , 1991 .

[120]  A. Sargent,et al.  Anatomy of a merger : CO in Arp 299 (IC 694-NGC 3690) , 1991 .

[121]  N. Scoville,et al.  Molecular gas in galaxies , 1991 .

[122]  C. Tinney,et al.  Molecular gas in intermediate luminosity IRAS galaxies , 1990 .

[123]  George Helou,et al.  A 1. 49 GHz atlas of the IRAS Bright Galaxy Sample , 1990 .

[124]  G. Neugebauer,et al.  The IRAS bright galaxy sample. V. Multibeam photometry of galaxies with L(IR) greater than 10 to the 11th solar luminosities , 1990 .

[125]  L. Blitz,et al.  High Resolution CO Images of Seyfert Galaxies , 1990 .

[126]  T. Heckman,et al.  Long-slit optical spectroscopy of powerful far-infrared galaxies - The nature of the nuclear energy source , 1989 .

[127]  G. Neugebauer,et al.  The IRAS Bright Galaxy Sample. IV. Complete IRAS observations , 1989 .

[128]  R. Antonucci,et al.  Detection of strong carbon monoxide emission from the host galaxy of the quasar I Zw 1 , 1989 .

[129]  G. Neugebauer,et al.  Warm ultraluminous galaxies in the IRAS survey - The transition from galaxy to quasar? , 1988 .

[130]  G. Neugebauer,et al.  Ultraluminous infrared galaxies and the origin of quasars , 1988 .

[131]  Philip R. Maloney,et al.  I(CO)/N(H2) conversions and molecular gas abundances in spiral and irregular galaxies , 1988 .

[132]  B. T. Soifer,et al.  Aperture synthesis mapping of molecular gas in high-luminosity IRAS galaxies , 1988 .

[133]  W. B. Burton,et al.  Millimetre and submillimetre astronomy , 1988 .

[134]  B. Madore,et al.  The IRAS bright galaxy sample. II - The sample and luminosity function , 1987 .

[135]  B. Soifer,et al.  Compact molecular gas structure in the interacting galaxy pair Arp 299 (IC 694-NGC 3690) , 1987 .

[136]  F. Schloerb,et al.  Carbon monoxide as an extragalactic mass tracer , 1986 .

[137]  G. Danielson,et al.  Molecular gas in high-luminosity IRAS galaxies , 1986 .

[138]  J. Riley,et al.  The Morphology of Extragalactic Radio Sources of High and Low Luminosity , 1974 .

[139]  J. Ables,et al.  Simultaneous observations of pulsar intensity variations at Parkes and Ootacamund. , 1974 .