Vacuum Rabi splitting and strong-coupling dynamics for surface-plasmon polaritons and rhodamine 6G molecules.

We report on strong coupling between surface-plasmon polaritons (SPP) and Rhodamine 6G (R6G) molecules, with double vacuum Rabi splitting energies up to 230 and 110 meV. In addition, we demonstrate the emission of all three energy branches of the strongly coupled SPP-exciton hybrid system, revealing features of system dynamics that are not visible in conventional reflectometry. Finally, in analogy to tunable-Q microcavities, we show that the Rabi splitting can be controlled by adjusting the interaction time between waveguided SPPs and R6G deposited on top of the waveguide. The interaction time can be controlled with sub-fs precision by adjusting the length of the R6G area with standard lithography methods.

[1]  E. Burstein,et al.  Luminescence of dye molecules adsorbed at a Ag surface , 1981 .

[2]  Stephen R. Forrest,et al.  Strong exciton–photon coupling in organic materials , 2007 .

[3]  Peter Nordlander,et al.  Plexcitonic nanoparticles: plasmon-exciton coupling in nanoshell-J-aggregate complexes. , 2008, Nano letters.

[4]  M. S. Skolnick,et al.  Strong exciton–photon coupling in an organic semiconductor microcavity , 1998, Nature.

[5]  William L. Barnes,et al.  Strong coupling between surface plasmon-polaritons and organic molecules in subwavelength hole arrays , 2005 .

[6]  David G. Lidzey,et al.  Controlling the interactions between polaritons and molecular vibrations in strongly coupled organic semiconductor microcavities , 2008 .

[7]  Peter A. Hobson,et al.  Strong exciton–photon coupling in a low-Q all-metal mirror microcavity , 2002 .

[8]  Wayne Dickson,et al.  Molecular plasmonics with tunable exciton-plasmon coupling strength in J-aggregate hybridized Au nanorod assemblies. , 2007, Nano letters.

[9]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[10]  Stephan W Koch,et al.  Vacuum Rabi splitting in semiconductors , 2006 .

[11]  C. Weisbuch,et al.  Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity. , 1992, Physical review letters.

[12]  A. Maradudin,et al.  Nano-optics of surface plasmon polaritons , 2005 .

[13]  A. Brillante,et al.  Exciton–surface plasmon coupling: An experimental investigation , 1982 .

[14]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[15]  M E Abdelsalam,et al.  Strong coupling between localized plasmons and organic excitons in metal nanovoids. , 2006, Physical review letters.

[16]  V. Podolskiy,et al.  Stimulated emission of surface plasmon polaritons , 2008, 2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science.

[17]  Andrew G. Glen,et al.  APPL , 2001 .

[18]  G. Rupper,et al.  Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity , 2004, Nature.

[19]  Harald Ditlbacher,et al.  Two-dimensional optics with surface plasmon polaritons , 2002 .

[20]  David G. Lidzey,et al.  Cavity polaritons in microcavities containing disordered organic semiconductors , 2003 .

[21]  Molecular coupling of light with plasmonic waveguides. , 2007, Optics express.

[22]  Ray Murray,et al.  Hybrid polaritons in strongly coupled microcavities: experiments and models , 2004 .

[23]  J. Mugnier,et al.  Strong coupling between surface plasmons and excitons in an organic semiconductor. , 2004, Physical review letters.

[24]  J. Plenet,et al.  Particularities of surface plasmon–exciton strong coupling with large Rabi splitting , 2008 .

[25]  M. Reva,et al.  Effect of intermolecular interactions on the electronic spectra of rhodamine 6G , 1977 .

[26]  J. Plenet,et al.  Emission of hybrid organic-inorganic exciton/plasmon mixed states , 2007 .

[27]  V. Kulakovskii,et al.  Strong coupling in a single quantum dot–semiconductor microcavity system , 2004, Nature.

[28]  M. S. Skolnick,et al.  Photon-mediated hybridization of frenkel excitons in organic semiconductor microcavities , 2000, Science.

[29]  S R Forrest,et al.  Strong exciton-photon coupling and exciton hybridization in a thermally evaporated polycrystalline film of an organic small molecule. , 2004, Physical review letters.

[30]  P. Bojarski Concentration quenching and depolarization of rhodamine 6G in the presence of fluorescent dimers in polyvinyl alcohol films , 1997 .

[31]  M. S. Skolnick,et al.  Strong coupling phenomena in quantum microcavity structures , 1998 .

[32]  E. Kretschmann,et al.  Notizen: Radiative Decay of Non Radiative Surface Plasmons Excited by Light , 1968 .

[33]  M. Pettersson,et al.  Frequency conversion of propagating surface plasmon polaritons by organic molecules , 2008 .