The order of convergence of Eigenfrequencies in finite element approximations of fluid-structure interaction problems

In this paper we prove a double order for the convergence of eigenfrequencies in fluid-structure vibration problems. We improve estimates given recently for compressible and incompressible fluids. To do this, we extend classical results on finite element spectral approximation to nonconforming methods for noncompact operators.

[1]  Jacques Rappaz,et al.  Spectral Approximation .1. Problem of Convergence , 1978 .

[2]  Yves Ousset,et al.  A displacement method for the analysis of vibrations of coupled fluid-structure systems , 1978 .

[3]  A. Bermúdez,et al.  Finite element vibration analysis of fluid-solid systems without spurious modes , 1995 .

[4]  Alfredo Bermúdez,et al.  Finite element computation of the vibration modes of a fluid—solid system , 1994 .

[5]  JEAN DESCLOUX,et al.  On spectral approximation. Part 2. Error estimates for the Galerkin method , 1978 .

[6]  J. H. Wilkinson The algebraic eigenvalue problem , 1966 .

[7]  B. Mercier,et al.  Eigenvalue approximation by mixed and hybrid methods , 1981 .

[8]  Roger Ohayon,et al.  Interactions fluides-structures , 1992 .

[9]  K. Bathe,et al.  Analysis of fluid-structure interactions. a direct symmetric coupled formulation based on the fluid velocity potential , 1985 .

[10]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[11]  Robert L. Taylor,et al.  Vibration analysis of fluid-solid systems using a finite element displacement formulation , 1990 .

[12]  Ricardo G. Durán,et al.  Finite element analysis of compressible and incompressible fluid-solid systems , 1998, Math. Comput..

[13]  Jacqueline Boujot,et al.  Mathematical formulation of fluid-structure interaction problems , 1987 .

[14]  P. Raviart,et al.  A mixed finite element method for 2-nd order elliptic problems , 1977 .