Size-controlled synthesis of MIL-101(Cr) nanoparticles with enhanced selectivity for CO2 over N2

Nanoparticles of MIL-101(Cr) have been fabricated using a hydrothermal method for the first time. The particle size can be controlled from 19 (4) nm to 84 (12) nm, by using a monocarboxylic acid as a mediator. These nano MIL-101(Cr) materials exhibit higher selectivities for CO2 over N2 than bulk MIL-101(Cr).

[1]  C. Serre,et al.  Elaboration and properties of hierarchically structured optical thin films of MIL-101(Cr). , 2009, Chemical communications.

[2]  E. Roduner Size matters: why nanomaterials are different. , 2006, Chemical Society reviews.

[3]  Weiqi Wang,et al.  Facile synthesis of nanocrystals of a microporous metal-organic framework by an ultrasonic method and selective sensing of organoamines. , 2008, Chemical communications.

[4]  Weili Lin,et al.  Nanoscale metal-organic frameworks as potential multimodal contrast enhancing agents. , 2006, Journal of the American Chemical Society.

[5]  Ruxandra Gref,et al.  Optimisation of the synthesis of MOF nanoparticles made of flexible porous iron fumarate MIL-88A , 2011 .

[6]  C. Serre,et al.  A Chromium Terephthalate-Based Solid with Unusually Large Pore Volumes and Surface Area , 2005, Science.

[7]  S. Kitagawa,et al.  Differences of crystal structure and dynamics between a soft porous nanocrystal and a bulk crystal. , 2011, Chemical communications.

[8]  S. Kitagawa,et al.  Soft porous crystals. , 2009, Nature chemistry.

[9]  G. Somorjai,et al.  Nanoscale advances in catalysis and energy applications. , 2010, Nano letters.

[10]  S. Jhung,et al.  Facile synthesis of nano-sized metal-organic frameworks, chromium-benzenedicarboxylate, MIL-101 , 2011 .

[11]  A. Baiker,et al.  Polymer-assisted synthesis of nanocrystalline copper-based metal–organic framework for amine oxidation , 2011 .

[12]  C. Serre,et al.  Porous Chromium Terephthalate MIL‐101 with Coordinatively Unsaturated Sites: Surface Functionalization, Encapsulation, Sorption and Catalysis , 2009 .

[13]  C. Serre,et al.  High uptakes of CO2 and CH4 in mesoporous metal-organic frameworks MIL-100 and MIL-101. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[14]  Michael O'Keeffe,et al.  Secondary building units, nets and bonding in the chemistry of metal-organic frameworks. , 2009, Chemical Society reviews.

[15]  Susumu Kitagawa,et al.  Controlled Multiscale Synthesis of Porous Coordination Polymer in Nano/Micro Regimes , 2010 .

[16]  I. Imaz,et al.  Nanoscale metal-organic materials. , 2011, Chemical Society reviews.

[17]  Wenbin Lin,et al.  Nanoscale coordination polymers for platinum-based anticancer drug delivery. , 2008, Journal of the American Chemical Society.

[18]  Wenbin Lin,et al.  Nanoscale Metal–Organic Frameworks: Magnetic Resonance Imaging Contrast Agents and Beyond , 2010 .

[19]  Gérard Férey,et al.  Hybrid porous solids: past, present, future. , 2008, Chemical Society reviews.

[20]  Keiji Nakagawa,et al.  Rapid preparation of flexible porous coordination polymer nanocrystals with accelerated guest adsorption kinetics. , 2010, Nature chemistry.

[21]  Wenbin Lin,et al.  Surfactant-assisted synthesis of nanoscale gadolinium metal-organic frameworks for potential multimodal imaging. , 2008, Angewandte Chemie.

[22]  Ulrich Müller,et al.  Industrial applications of metal-organic frameworks. , 2009, Chemical Society reviews.

[23]  Y. Wada,et al.  Size-controlled synthesis of anatase TiO2 nanoparticles by carboxylic acid group-containing organics , 2005 .

[24]  J. Bai,et al.  Synthesis and enhanced H2 adsorption properties of a mesoporous nanocrystal of MOF-5: controlling nano-/mesostructures of MOFs to improve their H2 heat of adsorption. , 2010, Chemistry.

[25]  R. Fischer,et al.  Trapping metal-organic framework nanocrystals: an in-situ time-resolved light scattering study on the crystal growth of MOF-5 in solution. , 2007, Journal of the American Chemical Society.