Complex yeast–bacteria interactions affect the yield of industrial ethanol fermentation

[1]  M. Sommer,et al.  Strain dynamics of specific contaminant bacteria modulate the performance of ethanol biorefineries , 2021, bioRxiv.

[2]  Pedro A. G. Tizei,et al.  Static microplate fermentation and automated growth analysis approaches identified a highly-aldehyde resistant Saccharomyces cerevisiae strain , 2019, Biomass and Bioenergy.

[3]  J. Gore,et al.  Simple organizing principles in microbial communities. , 2018, Current opinion in microbiology.

[4]  M. Sommer,et al.  A synthetic medium to simulate sugarcane molasses , 2018, Biotechnology for Biofuels.

[5]  Karsten Zengler,et al.  Need for Laboratory Ecosystems To Unravel the Structures and Functions of Soil Microbial Communities Mediated by Chemistry , 2018, mBio.

[6]  Juan F. Poyatos,et al.  High-order interactions dominate the functional landscape of microbial consortia , 2018, bioRxiv.

[7]  M. Bradford,et al.  Understanding how microbiomes influence the systems they inhabit , 2018, bioRxiv.

[8]  K. Zengler,et al.  The social network of microorganisms — how auxotrophies shape complex communities , 2018, Nature Reviews Microbiology.

[9]  D. Machado,et al.  Fast automated reconstruction of genome-scale metabolic models for microbial species and communities , 2018, bioRxiv.

[10]  Mikhail Tikhonov,et al.  Emergent simplicity in microbial community assembly , 2017, Science.

[11]  T. Leathers,et al.  Resolving bacterial contamination of fuel ethanol fermentations with beneficial bacteria - An alternative to antibiotic treatment. , 2018, Bioresource technology.

[12]  Ophelia S. Venturelli,et al.  Deciphering microbial interactions in synthetic human gut microbiome communities , 2017, bioRxiv.

[13]  Kiran Raosaheb Patil,et al.  Yeast Creates a Niche for Symbiotic Lactic Acid Bacteria through Nitrogen Overflow , 2017, Cell systems.

[14]  K. Foster,et al.  The evolution of the host microbiome as an ecosystem on a leash , 2017, Nature.

[15]  K. Foster,et al.  Competing species leave many potential niches unfilled , 2017, Nature Ecology & Evolution.

[16]  A. K. Gombert,et al.  A simple scaled down system to mimic the industrial production of first generation fuel ethanol in Brazil , 2017, Antonie van Leeuwenhoek.

[17]  Henrique Vianna de Amorim,et al.  Ethanol production in Brazil: a bridge between science and industry , 2016, Brazilian journal of microbiology : [publication of the Brazilian Society for Microbiology].

[18]  P. Straight,et al.  Bacterial Communities: Interactions to Scale , 2016, Front. Microbiol..

[19]  Eyal Bairey,et al.  High-order species interactions shape ecosystem diversity , 2016, Nature Communications.

[20]  Hans C. Bernstein,et al.  Microbial Community Metabolic Modeling: A Community Data‐Driven Network Reconstruction , 2016, Journal of cellular physiology.

[21]  Andreas Wagner,et al.  Growthcurver: an R package for obtaining interpretable metrics from microbial growth curves , 2016, BMC Bioinformatics.

[22]  Robert G McBride,et al.  Diversity, Productivity, and Stability of an Industrial Microbial Ecosystem , 2016, Applied and Environmental Microbiology.

[23]  Qing Li,et al.  Bacterial Community Structure and Dynamics During Corn-Based Bioethanol Fermentation , 2016, Microbial Ecology.

[24]  B. Wolfe,et al.  Fermented Foods as Experimentally Tractable Microbial Ecosystems , 2015, Cell.

[25]  Rachel J. Dutton,et al.  Cheese Rind Communities Provide Tractable Systems for In Situ and In Vitro Studies of Microbial Diversity , 2014, Cell.

[26]  Karen De Roy,et al.  Synthetic microbial ecosystems: an exciting tool to understand and apply microbial communities. , 2014, Environmental microbiology.

[27]  Orkun S. Soyer,et al.  Synthetic microbial communities , 2014, Current opinion in microbiology.

[28]  Joshua A. Lerman,et al.  COBRApy: COnstraints-Based Reconstruction and Analysis for Python , 2013, BMC Systems Biology.

[29]  A. K. Gombert,et al.  What do we know about the yeast strains from the Brazilian fuel ethanol industry? , 2013, Applied Microbiology and Biotechnology.

[30]  K. Foster,et al.  Competition, Not Cooperation, Dominates Interactions among Culturable Microbial Species , 2012, Current Biology.

[31]  T. Hayakawa,et al.  Novel physiological roles for glutathione in sequestering acetaldehyde to confer acetaldehyde tolerance in Saccharomyces cerevisiae , 2012, Applied Microbiology and Biotechnology.

[32]  Luiz Carlos Basso,et al.  Ethanol Production in Brazil: The Industrial Process and Its Impact on Yeast Fermentation , 2011 .

[33]  Marcos S. Buckeridge,et al.  Scientific challenges of bioethanol production in Brazil , 2011, Applied Microbiology and Biotechnology.

[34]  M. Burns,et al.  Microdroplet-Enabled Highly Parallel Co-Cultivation of Microbial Communities , 2011, PloS one.

[35]  Vasco Azevedo,et al.  Diversity of lactic acid bacteria of the bioethanol process , 2010, BMC Microbiology.

[36]  W. D. de Vos,et al.  Development of a minimal growth medium for Lactobacillus plantarum , 2010, Letters in applied microbiology.

[37]  C. Fuqua,et al.  Bacterial competition: surviving and thriving in the microbial jungle , 2010, Nature Reviews Microbiology.

[38]  Henrique Vianna de Amorim,et al.  Sugar cane juice and molasses, beet molasses and sweet sorghum: composition and usage , 2009 .

[39]  Bernhard O. Palsson,et al.  Connecting Extracellular Metabolomic Measurements to Intracellular Flux States in Yeast , 2022 .

[40]  Courtney J. Robinson,et al.  Rules of engagement: interspecies interactions that regulate microbial communities. , 2008, Annual review of microbiology.

[41]  Jack T. Pronk,et al.  Physiological and Transcriptional Responses to High Concentrations of Lactic Acid in Anaerobic Chemostat Cultures of Saccharomyces cerevisiae , 2008, Applied and Environmental Microbiology.

[42]  J. Heijnen,et al.  Determination of the cytosolic free NAD/NADH ratio in Saccharomyces cerevisiae under steady‐state and highly dynamic conditions , 2008, Biotechnology and bioengineering.

[43]  G. Lidén,et al.  Anaerobic glycerol production by Saccharomyces cerevisiae strains under hyperosmotic stress , 2007, Applied Microbiology and Biotechnology.

[44]  P. Neysens,et al.  Carbon dioxide stimulates the production of amylovorin L by Lactobacillus amylovorus DCE 471, while enhanced aeration causes biphasic kinetics of growth and bacteriocin production. , 2005, International journal of food microbiology.

[45]  T. Leathers,et al.  Bacterial contaminants of fuel ethanol production , 2004, Journal of Industrial Microbiology and Biotechnology.

[46]  G. Stanley,et al.  Inhibition and stimulation of yeast growth by acetaldehyde , 1993, Biotechnology Letters.

[47]  D. Gevers,et al.  Biphasic kinetics of growth and bacteriocin production with Lactobacillus amylovorus DCE 471 occur under stress conditions. , 2003, Microbiology.

[48]  J. V. Van Beeumen,et al.  Characterization and production of amylovorin L471, a bacteriocin purified from Lactobacillus amylovorus DCE 471 by a novel three-step method. , 1999, Microbiology.

[49]  W. M. Ingledew,et al.  Effects of lactobacilli on yeast-catalyzed ethanol fermentations , 1997, Applied and environmental microbiology.

[50]  L. Vuyst,et al.  Characterization of the Antagonistic Activity of Lactobacillus amylovorus DCE 471 and Large Scale Is , 1996 .

[51]  C. Gallo,et al.  Determinação da microbiota bacteriana de mosto e de dornas na fermentação alcoolica , 1990 .