Input perturbations for adaptive control and learning
暂无分享,去创建一个
Ambuj Tewari | George Michailidis | Mohamad Kazem Shirani Faradonbeh | Ambuj Tewari | G. Michailidis
[1] John B. Moore,et al. Persistence of Excitation in Linear Systems , 1985, 1985 American Control Conference.
[2] Riccardo Marino,et al. Nonlinear control design: geometric, adaptive and robust , 1995 .
[3] Ambuj Tewari,et al. On Optimality of Adaptive Linear-Quadratic Regulators , 2018, ArXiv.
[4] Ambuj Tewari,et al. Optimistic Linear Programming gives Logarithmic Regret for Irreducible MDPs , 2007, NIPS.
[5] Ambuj Tewari,et al. Finite Time Identification in Unstable Linear Systems , 2017, Autom..
[6] Dimitri P. Bertsekas,et al. Dynamic Programming and Optimal Control, Two Volume Set , 1995 .
[7] Michael I. Jordan,et al. Is Q-learning Provably Efficient? , 2018, NeurIPS.
[8] Alessandro Lazaric,et al. Improved Regret Bounds for Thompson Sampling in Linear Quadratic Control Problems , 2018, ICML.
[9] Tamer Basar,et al. Optimal control of LTI systems over unreliable communication links , 2006, Autom..
[10] Sean P. Meyn. Control Techniques for Complex Networks: Workload , 2007 .
[11] Yi Ouyang,et al. Optimal Infinite Horizon Decentralized Networked Controllers With Unreliable Communication , 2018, IEEE Transactions on Automatic Control.
[12] Daphna Weinshall,et al. Online Learning in the Embedded Manifold of Low-rank Matrices , 2012, J. Mach. Learn. Res..
[13] T. L. Lai Andherbertrobbins. Asymptotically Efficient Adaptive Allocation Rules , 2022 .
[14] A. Timmermann,et al. Small Sample Properties of Forecasts from Autoregressive Models Under Structural Breaks , 2003, SSRN Electronic Journal.
[15] Adel Javanmard,et al. Efficient Reinforcement Learning for High Dimensional Linear Quadratic Systems , 2012, NIPS.
[16] Ambuj Tewari,et al. On adaptive Linear-Quadratic regulators , 2020, Autom..
[17] Csaba Szepesvári,et al. Improved Algorithms for Linear Stochastic Bandits , 2011, NIPS.
[18] P. Kumar,et al. Adaptive Linear Quadratic Gaussian Control: The Cost-Biased Approach Revisited , 1998 .
[19] S. Bittanti,et al. ADAPTIVE CONTROL OF LINEAR TIME INVARIANT SYSTEMS: THE "BET ON THE BEST" PRINCIPLE ∗ , 2006 .
[20] Ambuj Tewari,et al. Finite Time Adaptive Stabilization of LQ Systems , 2018, ArXiv.
[21] Craig Boutilier,et al. Data center cooling using model-predictive control , 2018, NeurIPS.
[22] Ambuj Tewari,et al. Optimism-Based Adaptive Regulation of Linear-Quadratic Systems , 2017, IEEE Transactions on Automatic Control.
[23] S. Liberty,et al. Linear Systems , 2010, Scientific Parallel Computing.
[24] Jan Willem Polderman,et al. A note on the structure of two subsets of the parameter space in adaptive control problems , 1986 .
[25] Joel A. Tropp,et al. User-Friendly Tail Bounds for Sums of Random Matrices , 2010, Found. Comput. Math..
[26] James Lam,et al. Stabilization of Discrete-Time Nonlinear Uncertain Systems by Feedback Based on LS Algorithm , 2013, SIAM J. Control. Optim..
[27] Ambuj Tewari,et al. Optimality of Fast-Matching Algorithms for Random Networks With Applications to Structural Controllability , 2015, IEEE Transactions on Control of Network Systems.
[28] Csaba Szepesvári,et al. Regret Bounds for the Adaptive Control of Linear Quadratic Systems , 2011, COLT.
[29] Khashayar Khosravi,et al. Mostly Exploration-Free Algorithms for Contextual Bandits , 2017, Manag. Sci..
[30] Sham M. Kakade,et al. Global Convergence of Policy Gradient Methods for the Linear Quadratic Regulator , 2018, ICML.
[31] Han-Fu Chen,et al. The AAstrom-Wittenmark self-tuning regulator revisited and ELS-based adaptive trackers , 1991 .
[32] Ruth F. Curtain,et al. Linear-quadratic control: An introduction , 1997, Autom..
[33] Jan Willem Polderman,et al. On the necessity of identifying the true parameter in adaptive LQ control , 1986 .