MTD, Where Art Thou? A Systematic Review of Moving Target Defense Techniques for IoT

[1]  Hongwei Shi,et al.  Moving Target Defense for Internet of Things Based on the Zero-Determinant Theory , 2020, IEEE Internet of Things Journal.

[2]  William W. Streilein,et al.  On the Challenges of Effective Movement , 2014, MTD '14.

[3]  Gene Itkis,et al.  Intrusion-Resilient Signatures: Generic Constructions, or Defeating Strong Adversary with Minimal Assumptions , 2002, SCN.

[4]  A. Shiryayev On Tables of Random Numbers , 1993 .

[5]  Jin B. Hong,et al.  A framework for automating security analysis of the internet of things , 2017, J. Netw. Comput. Appl..

[6]  Walid Saad,et al.  On the cybersecurity of m-Health IoT systems with LED bitslice implementation , 2018, 2018 IEEE International Conference on Consumer Electronics (ICCE).

[7]  Scott A. DeLoach,et al.  Towards a Theory of Moving Target Defense , 2014, MTD '14.

[8]  Mehdi Shajari,et al.  A cost-sensitive move selection strategy for moving target defense , 2018, Comput. Secur..

[9]  Brice Morin,et al.  Engineering Software Diversity: a Model-Based Approach to Systematically Diversify Communications , 2018, MoDELS.

[10]  Sushil Jajodia,et al.  Moving Target Defense - Creating Asymmetric Uncertainty for Cyber Threats , 2011, Moving Target Defense.

[11]  Ville Leppänen,et al.  Internal Interface Diversification as a Security Measure in Sensor Networks , 2018, J. Sens. Actuator Networks.

[12]  Khaled Salah,et al.  IoT security: Review, blockchain solutions, and open challenges , 2017, Future Gener. Comput. Syst..

[13]  Ville Leppänen,et al.  Interface Diversification in IoT Operating Systems , 2016, 2016 IEEE/ACM 9th International Conference on Utility and Cloud Computing (UCC).

[14]  Alie El-Din Mady,et al.  Rekeying-based Moving Target Defence Mechanism for Side-Channel Attacks , 2019, 2019 Global IoT Summit (GIoTS).

[15]  Rui Zhuang,et al.  A theory for understanding and quantifying moving target defense , 2015 .

[16]  Salim Hariri,et al.  SDR-Based Resilient Wireless Communications , 2017, 2017 International Conference on Cloud and Autonomic Computing (ICCAC).

[17]  Mark Ryan,et al.  Malware Tolerant (Mesh-)Networks , 2018, CANS.

[18]  Jari-Matti Mäkelä,et al.  Diversification and obfuscation techniques for software security: A systematic literature review , 2018, Inf. Softw. Technol..

[19]  Elisa Bertino,et al.  MAVR: Code Reuse Stealthy Attacks and Mitigation on Unmanned Aerial Vehicles , 2015, 2015 IEEE 35th International Conference on Distributed Computing Systems.

[20]  Cédric Lauradoux,et al.  Ephemeral: Lightweight pseudonyms for 6LoWPAN MAC addresses , 2016, 2016 IEEE 27th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC).

[21]  Su Yao,et al.  Stochastic Cost Minimization Mechanism Based on Identifier Network for IoT Security , 2020, IEEE Internet of Things Journal.

[22]  Scott A. DeLoach,et al.  A Theory of Cyber Attacks: A Step Towards Analyzing MTD Systems , 2015, MTD@CCS.

[23]  Hooman Alavizadeh,et al.  Toward Proactive, Adaptive Defense: A Survey on Moving Target Defense , 2019, IEEE Communications Surveys & Tutorials.

[24]  D. Kewley,et al.  Dynamic approaches to thwart adversary intelligence gathering , 2001, Proceedings DARPA Information Survivability Conference and Exposition II. DISCEX'01.

[25]  Stefan Dziembowski,et al.  Towards Sound Fresh Re-keying with Hard (Physical) Learning Problems , 2016, CRYPTO.

[26]  Bryan C. Ward,et al.  Survey of Cyber Moving Targets Second Edition , 2018 .

[27]  Kimberly Zeitz,et al.  Changing the Game: A Micro Moving Target IPv6 Defense for the Internet of Things , 2018, IEEE Wireless Communications Letters.

[28]  Mohamed Azab,et al.  Honeypot-like Moving-target Defense for secure IoT Operation , 2018, 2018 IEEE 9th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON).

[29]  Pearl Brereton,et al.  Lessons from applying the systematic literature review process within the software engineering domain , 2007, J. Syst. Softw..

[30]  Romano Fantacci,et al.  IoT Security via Address Shuffling: The Easy Way , 2019, IEEE Internet of Things Journal.

[31]  Abdelmalik Bachir,et al.  Per Packet Flow Anonymization in 6LoWPAN IoT Networks , 2018, 2018 6th International Conference on Wireless Networks and Mobile Communications (WINCOM).

[32]  Riku Jäntti,et al.  Moving-target defense mechanisms against source-selective jamming attacks in tactical cognitive radio MANETs , 2014, 2014 IEEE Conference on Communications and Network Security.

[33]  Una-May O'Reilly,et al.  If You Can't Measure It, You Can't Improve It: Moving Target Defense Metrics , 2017, MTD@CCS.

[34]  Sailik Sengupta,et al.  A Survey of Moving Target Defenses for Network Security , 2019, IEEE Communications Surveys & Tutorials.

[35]  Robert Simon,et al.  The design and implementation of a multicast address moving target defensive system for internet-of-things applications , 2017, MILCOM 2017 - 2017 IEEE Military Communications Conference (MILCOM).

[36]  Cheng Lei,et al.  Moving Target Defense Techniques: A Survey , 2018, Secur. Commun. Networks.

[37]  Jin B. Hong,et al.  Dynamic security metrics for measuring the effectiveness of moving target defense techniques , 2018, Comput. Secur..

[38]  Alie El-Din Mady,et al.  Moving Target Defense Mechanism for Side-Channel Attacks , 2020, IEEE Systems Journal.

[39]  Ville Leppänen,et al.  Obfuscation and diversification for securing the internet of things (IoT) , 2016 .

[40]  Georgios Kambourakis,et al.  DDoS in the IoT: Mirai and Other Botnets , 2017, Computer.

[41]  Sandro Etalle,et al.  Challenges in Designing Exploit Mitigations for Deeply Embedded Systems , 2019, 2019 IEEE European Symposium on Security and Privacy (EuroS&P).

[42]  Joseph G. Tront,et al.  Implementing moving target IPv6 defense to secure 6LoWPAN in the internet of things and smart grid , 2014, CISR '14.

[43]  Marco Vieira,et al.  Moving target defense in cloud computing: A systematic mapping study , 2020, Comput. Secur..

[44]  Tanner Preiss,et al.  Implementing dynamic address changes in ContikiOS , 2014, International Conference on Information Society (i-Society 2014).

[45]  Ingrid Verbauwhede,et al.  Software only, extremely compact, Keccak-based secure PRNG on ARM Cortex-M , 2014, 2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC).

[46]  William W. Streilein,et al.  Finding Focus in the Blur of Moving-Target Techniques , 2014, IEEE Security & Privacy.

[47]  Jinjun Chen,et al.  DLSeF , 2016, ACM Trans. Embed. Comput. Syst..

[48]  Kemal Akkaya,et al.  A Review of Moving Target Defense Mechanisms for Internet of Things Applications , 2020, Modeling and Design of Secure Internet of Things.

[49]  Nora Cuppens-Boulahia,et al.  IANVS: A Moving Target Defense Framework for a Resilient Internet of Things , 2020, 2020 IEEE Symposium on Computers and Communications (ISCC).

[50]  Edgar R. Weippl,et al.  Lightweight Address Hopping for Defending the IPv6 IoT , 2017, ARES.

[51]  Jinjun Chen,et al.  A Dynamic Key Length Based Approach for Real-Time Security Verification of Big Sensing Data Stream , 2015, WISE.

[52]  Pedro Peris-López,et al.  AVRAND: A Software-Based Defense Against Code Reuse Attacks for AVR Embedded Devices , 2016, DIMVA.

[53]  Jin B. Hong,et al.  Proactive defense mechanisms for the software-defined Internet of Things with non-patchable vulnerabilities , 2018, Future Gener. Comput. Syst..

[54]  Sushil Jajodia,et al.  A moving target defense mechanism for MANETs based on identity virtualization , 2013, 2013 IEEE Conference on Communications and Network Security (CNS).

[55]  Gianluca Dini,et al.  SAD-SJ: A self-adaptive decentralized solution against Selective Jamming attack in Wireless Sensor Networks , 2013, 2013 IEEE 18th Conference on Emerging Technologies & Factory Automation (ETFA).

[56]  S. Hyrynsalmi,et al.  Security in the Internet of Things through obfuscation and diversification , 2015, 2015 International Conference on Computing, Communication and Security (ICCCS).

[57]  Joseph G. Tront,et al.  Designing a Micro-moving Target IPv6 Defense for the Internet of Things , 2017, 2017 IEEE/ACM Second International Conference on Internet-of-Things Design and Implementation (IoTDI).

[58]  Valentina Casola,et al.  A moving target defense approach for protecting resource-constrained distributed devices , 2013, 2013 IEEE 14th International Conference on Information Reuse & Integration (IRI).

[59]  Antonino Mazzeo,et al.  SIREN: a feasible moving target defence framework for securing resource-constrained embedded nodes , 2013, Int. J. Crit. Comput. Based Syst..

[60]  Ville Leppänen,et al.  Applying Internal Interface Diversification to IoT Operating Systems , 2016, 2016 International Conference on Software Security and Assurance (ICSSA).

[61]  Claes Wohlin,et al.  Guidelines for snowballing in systematic literature studies and a replication in software engineering , 2014, EASE '14.

[62]  Akbar Siami Namin,et al.  A Survey on the Moving Target Defense Strategies: An Architectural Perspective , 2019, Journal of Computer Science and Technology.

[63]  Wei Hu,et al.  Moving target defense: state of the art and characteristics , 2016, Frontiers of Information Technology & Electronic Engineering.

[64]  Salim Hariri,et al.  Design and evaluation of resilient infrastructures systems for smart cities , 2016, 2016 IEEE International Smart Cities Conference (ISC2).

[65]  Kaleel Mahmood,et al.  Moving target defense for Internet of Things using context aware code partitioning and code diversification , 2016, 2016 IEEE 3rd World Forum on Internet of Things (WF-IoT).