In situ-forming hydrogels--review of temperature-sensitive systems.

In the past few years, an increasing number of in situ-forming systems have been reported in the literature for various biomedical applications, including drug delivery, cell encapsulation, and tissue repair. There are several possible mechanisms that lead to in situ gel formation: solvent exchange, UV-irradiation, ionic cross-linkage, pH change, and temperature modulation. The thermosensitive approach can be advantageous for particular applications as it does not require organic solvents, co-polymerization agents, or an externally applied trigger for gelation. In the last 2 decades, several thermosensitive formulations have been proposed. This manuscript focuses on aqueous polymeric solutions that form implants in situ in response to temperature change, generally from ambient to body temperature. It mainly reviews the characterization and use of polysaccharides, N-isopropylacrylamide copolymers, poly(ethylene oxide-b-propylene oxide-b-ethylene oxide) (poloxamer) and its copolymers, poly(ethylene oxide)/(D,L-lactic acid-co-glycolic acid) copolymers, and thermosensitive liposome-based systems.

[1]  P. Messersmith,et al.  In situ crosslinking of a biomimetic peptide-PEG hydrogel via thermally triggered activation of factor XIII. , 2002, Biomaterials.

[2]  Y. Oh,et al.  Rheological evaluation of thermosensitive and mucoadhesive vaginal gels in physiological conditions. , 2002, International journal of pharmaceutics.

[3]  Makoto Kikuchi,et al.  Photocrosslinkable chitosan as a dressing for wound occlusion and accelerator in healing process. , 2002, Biomaterials.

[4]  F. Szoka,et al.  Robust and prolonged gene expression from injectable polymeric implants , 2002, Gene Therapy.

[5]  Karin Schillén,et al.  Characterization of a PEO-PPO-PEO block copolymer system , 1993 .

[6]  P. Messersmith,et al.  Triggered release of calcium from lipid vesicles: a bioinspired strategy for rapid gelation of polysaccharide and protein hydrogels. , 2001, Biomaterials.

[7]  H. G. Schild Poly(N-isopropylacrylamide): experiment, theory and application , 1992 .

[8]  Benjamin Chu,et al.  Light-scattering study on the association behavior of triblock polymers of ethylene oxide and propylene oxide in aqueous solution , 1988 .

[9]  J. Leroux,et al.  Effects of steam sterilization on thermogelling chitosan-based gels. , 2001, Journal of biomedical materials research.

[10]  A. Banga,et al.  Controlled release of human growth hormone in rats following parenteral administration of poloxamer gels , 1997 .

[11]  Sang Beom Lee,et al.  A New Class of Biodegradable Thermosensitive Polymers. I. Synthesis and Characterization of Poly(organophosphazenes) with Methoxy-Poly(ethylene glycol) and Amino Acid Esters as Side Groups , 1999 .

[12]  S. Miller,et al.  Inulin disposition following intramuscular administration of an inulin/poloxamer gel matrix. , 1989, Journal of parenteral science and technology : a publication of the Parenteral Drug Association.

[13]  Y. Bae,et al.  In situ gelation of PEG-PLGA-PEG triblock copolymer aqueous solutions and degradation thereof. , 2000, Journal of biomedical materials research.

[14]  Anna Gutowska,et al.  Sol-gel transition temperature of PLGA-g-PEG aqueous solutions. , 2002, Biomacromolecules.

[15]  D. Attwood,et al.  Oral sustained delivery of theophylline from thermally reversible xyloglucan gels in rabbits , 2001, The Journal of pharmacy and pharmacology.

[16]  J. W. Campbell,et al.  X-ray diffraction studies of polysaccharide sulphates: Double helix models for κ- and ι-carrageenans , 1969 .

[17]  Jan Feijen,et al.  Effect of comonomer hydrophilicity and ionization on the lower critical solution temperature of N-isopropylacrylamide copolymers , 1993 .

[18]  Kinam Park,et al.  Controlled drug delivery : challenges and strategies , 1997 .

[19]  M. Amiji,et al.  Intratumoral Administration of Paclitaxel in an In Situ Gelling Poloxamer 407 Formulation , 2002, Pharmaceutical development and technology.

[20]  D. Attwood,et al.  Thermally reversible xyloglucan gels as vehicles for oral drug delivery. , 1999, International journal of pharmaceutics.

[21]  L. Bromberg Self-Assembly in Aqueous Solutions of Polyether-Modified Poly(acrylic acid) , 1998 .

[22]  H. Hoffmann,et al.  The aggregation behavior of poly-(oxyethylene)-poly-(oxypropylene)-poly-(oxyethylene)-block-copolymers in aqueous solution , 1990 .

[23]  J. Leroux,et al.  Characterization of thermosensitive chitosan gels for the sustained delivery of drugs. , 2000, International journal of pharmaceutics.

[24]  M. Malmsten,et al.  Nonionic polyhers and surfactants - some anomalies in temperature dependence and in interactions with ionic surfactants , 1990 .

[25]  Oscar Chiantore,et al.  Solution properties of poly(N‐isopropylacrylamide) , 1979 .

[26]  J. Leroux,et al.  Novel injectable neutral solutions of chitosan form biodegradable gels in situ. , 2000, Biomaterials.

[27]  Sang Beom Lee,et al.  A New Class of Biodegradable Thermosensitive Polymers. 2. Hydrolytic Properties and Salt Effect on the Lower Critical Solution Temperature of Poly(organophosphazenes) with Methoxypoly(ethylene glycol) and Amino Acid Esters as Side Groups , 1999 .

[28]  J. Leroux,et al.  Irradiating or autoclaving chitosan/polyol solutions: effect on thermogelling chitosan-beta-glycerophosphate systems. , 2002, Chemical & pharmaceutical bulletin.

[29]  Allan S. Huffman,et al.  Thermally reversible hydrogels: II. Delivery and selective removal of substances from aqueous solutions , 1986 .

[30]  Anna Gutowska,et al.  Thermogelling biodegradable copolymer aqueous solutions for injectable protein delivery and tissue engineering. , 2002, Biomacromolecules.

[31]  D. Attwood,et al.  Ultrasonic velocity and light-scattering studies on the polyoxyethylene—polyoxypropylene copolymer Pluronic F127 in aqueous solution , 1982 .

[32]  L. Bromberg Polyether-Modified Poly(acrylic acid): Synthesis and Applications , 1998 .

[33]  D. Attwood,et al.  Thermally reversible xyloglucan gels as vehicles for rectal drug delivery. , 1998, Journal of controlled release : official journal of the Controlled Release Society.

[34]  F. Agnely,et al.  Controlled release of vancomycin from poloxamer 407 gels. , 1999, International journal of pharmaceutics.

[35]  K. Nishinari,et al.  Tailoring of xyloglucan properties using an enzyme , 1998 .

[36]  Y. Bae,et al.  Effect of cross-linked hemoglobin on functionality and viability of microencapsulated pancreatic islets. , 2002, Tissue engineering.

[37]  Y. Oh,et al.  Prolonged antifungal effects of clotrimazole-containing mucoadhesive thermosensitive gels on vaginitis. , 2002, Journal of controlled release : official journal of the Controlled Release Society.

[38]  Chong-K. Kim,et al.  Increased bioavailability of propranolol in rats by retaining thermally gelling liquid suppositories in the rectum. , 1999, Journal of controlled release : official journal of the Controlled Release Society.

[39]  I. Oh,et al.  Enhanced efficacy by percutaneous absorption of piroxicam from the poloxamer gel in rats. , 2000, International journal of pharmaceutics.

[40]  J. Liaw,et al.  Evaluation of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) gels as a release vehicle for percutaneous fentanyl. , 2000, Journal of controlled release : official journal of the Controlled Release Society.

[41]  Sung Wan Kim,et al.  Biodegradable thermosensitive micelles of PEG-PLGA-PEG triblock copolymers , 1999 .

[42]  D. Attwood,et al.  In situ gelling xyloglucan formulations for sustained release ocular delivery of pilocarpine hydrochloride. , 2001, International journal of pharmaceutics.

[43]  Anders Carlsson,et al.  Thermal gelation of nonionic cellulose ethers and ionic surfactants in water , 1990 .

[44]  Ron,et al.  Temperature-responsive gels and thermogelling polymer matrices for protein and peptide delivery. , 1998, Advanced drug delivery reviews.

[45]  L. D. Taylor,et al.  Preparation of films exhibiting a balanced temperature dependence to permeation by aqueous solutions—a study of lower consolute behavior , 1975 .

[46]  Young Moo Lee,et al.  A Thermosensitive Poly(organophosphazene) Gel , 2002 .

[47]  E. Lobel,et al.  A novel in situ-forming ophthalmic drug delivery system from alginates undergoing gelation in the eye , 1997 .

[48]  Y. Bae,et al.  Insulin release from islets of Langerhans entrapped in a poly(N-isopropylacrylamide-co-acrylic acid) polymer gel. , 1999, Journal of biomaterials science. Polymer edition.

[49]  G. Karlström,et al.  Interaction between ethyl(hydroxyethyl)cellulose and sodium dodecyl sulphate in aqueous solution , 1988 .

[50]  A. Rozier,et al.  Gelrite®: A novel, ion-activated, in-situ gelling polymer for ophthalmic vehicles. Effect on bioavailability of timolol , 1989 .

[51]  Moon Jeong Park,et al.  Gelation behavior of PEO–PLGA–PEO triblock copolymers in water , 2002 .

[52]  J. Mestecky,et al.  Biodegradable block copolymers for delivery of proteins and water-insoluble drugs. , 2001, Journal of controlled release : official journal of the Controlled Release Society.

[53]  Masanori Fujita,et al.  Controlled release of fibroblast growth factors and heparin from photocrosslinked chitosan hydrogels and subsequent effect on in vivo vascularization. , 2003, Journal of biomedical materials research. Part A.

[54]  E. Heymann Studies on sol-gel transformations. III. Sols, jellies and curds of sodium oleate , 1938 .

[55]  L. Dong,et al.  Thermally reversible hydrogels: III. Immobilization of enzymes for feedback reaction control , 1986 .

[56]  P. Amin,et al.  Sustained ophthalmic delivery of ofloxacin from a pH triggered in situ gelling system. , 2001, Journal of controlled release : official journal of the Controlled Release Society.

[57]  Kell Mortensen,et al.  Structural study on the micelle formation of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymer in aqueous solution , 1993 .

[58]  Phenotype of Hepatocyte Spheroids in Arg-Gly-Asp (RGD) Containing a Thermo-Reversible Extracellular Matrix , 2002, Bioscience, biotechnology, and biochemistry.

[59]  I. R. Schmolka Artificial skin. I. Preparation and properties of pluronic F-127 gels for treatment of burns. , 1972, Journal of biomedical materials research.

[60]  ゼントナー,ゲイレン・エム,et al.  Biodegradable low-molecular-weight triblock polyester polyethylene glycol copolymers having reverse thermal gelation properties , 1999 .

[61]  L. Bromberg Novel Family of Thermogelling Materials via C−C Bonding between Poly(acrylic acid) and Poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) , 1998 .

[62]  Sandeep Kumar,et al.  In situ-forming gels for ophthalmic drug delivery. , 1994, Journal of ocular pharmacology.

[63]  J. Hubbell,et al.  Intraarterial protein delivery via intimally-adherent bilayer hydrogels. , 2000, Journal of controlled release : official journal of the Controlled Release Society.

[64]  Masanori Fujita,et al.  Photocrosslinkable chitosan hydrogel containing fibroblast growth factor-2 stimulates wound healing in healing-impaired db/db mice. , 2003, Biomaterials.

[65]  J. Blonder,et al.  Dose-dependent hyperlipidemia in rabbits following administration of poloxamer 407 gel. , 1999, Life sciences.

[66]  Young Jin Kim,et al.  Controlled Release of Insulin from Injectable Biodegradable Triblock Copolymer , 2001, Pharmaceutical Research.

[67]  Y. Bae,et al.  Inverse thermally-reversible gelation of aqueous N-isopropylacrylamide copolymer solutions , 1998 .

[68]  Anna Gutowska,et al.  Thermogelling Biodegradable Polymers with Hydrophilic Backbones: PEG-g-PLGA , 2000 .

[69]  J. Leroux,et al.  Thermosensitive chitosan-based hydrogel containing liposomes for the delivery of hydrophilic molecules. , 2002, Journal of controlled release : official journal of the Controlled Release Society.

[70]  Y. Bae,et al.  The effect of zinc-crystallized glucagon-like peptide-1 on insulin secretion of macroencapsulated pancreatic islets. , 2001, Tissue engineering.

[71]  Dong Wang,et al.  Rheological characterisation of thermogelling chitosan/glycerol-phosphate solutions , 2001 .

[72]  K. Himmelstein,et al.  An in situ gelling system for parenteral delivery , 1996 .

[73]  Tetsuya Watanabe,et al.  Polymer-surfactant interactions. Binding of N-tetradecylpyridinium bromide to ethyl (hydroxyethyl) cellulose , 1989 .

[74]  Yu-Ling Cheng,et al.  In-Situ Thermoreversible Gelation of Block and Star Copolymers of Poly(ethylene glycol) and Poly(N-isopropylacrylamide) of Varying Architectures , 2001 .

[75]  Y. Bae,et al.  Extracellular matrix for a rechargeable cell delivery system. , 1998, Journal of controlled release : official journal of the Controlled Release Society.

[76]  Sung Wan Kim,et al.  Biodegradable block copolymers as injectable drug-delivery systems , 1997, Nature.

[77]  D G Stein,et al.  Biocompatibility of methylcellulose-based constructs designed for intracerebral gelation following experimental traumatic brain injury. , 2001, Biomaterials.

[78]  U. Kompella,et al.  Pluronic F127 gel formulations of deslorelin and GnRH reduce drug degradation and sustain drug release and effect in cattle. , 2002, Journal of controlled release : official journal of the Controlled Release Society.

[79]  D. Attwood,et al.  Xyloglucan gels as sustained release vehicles for the intraperitoneal administration of mitomycin C , 1998 .

[80]  S. Miller,et al.  Toxicological evaluation of poloxamer vehicles for intramuscular use. , 1985, Journal of parenteral science and technology : a publication of the Parenteral Drug Association.

[81]  Anna Gutowska,et al.  Biodegradable thermoreversible gelling PLGA-g-PEG copolymers , 2001 .

[82]  L. Bromberg Scaling of Rheological Properties of Hydrogels from Associating Polymers , 1998 .

[83]  B. Lindman,et al.  Rheological behavior during thermoreversible gelation of aqueous mixtures of ethyl(hydroxyethyl)cellulose and surfactants , 1995 .

[84]  Mohammed Berrada,et al.  A thermosensitive chitosan-based hydrogel for the local delivery of paclitaxel. , 2004, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[85]  E. Heymann Studies on sol-gel transformations. I. The inverse sol-gel transformation of methylcellulose in water , 1935 .

[86]  Ait-Kadi,et al.  Study of the Gelation Process of Polyethylene Oxidea -Polypropylene Oxideb -Polyethylene Oxidea Copolymer (Poloxamer 407) Aqueous Solutions , 1997, Journal of Colloid and Interface Science.

[87]  Y. Bae,et al.  Bioactive Polymers for Biohybrid Artificial Pancreas , 2001, Journal of drug targeting.

[88]  T. Johnston,et al.  Mechanism of poloxamer 407-induced hypertriglyceridemia in the rat. , 1993, Biochemical pharmacology.

[89]  J. Yliruusi,et al.  Controlled release injectable liposomal gel of ibuprofen for epidural analgesia. , 2000, International journal of pharmaceutics.

[90]  A. Bennett,et al.  Physico-chemical characterization of a polymeric injectable implant delivery system , 1995 .

[91]  A. Gutowska,et al.  Thermally reversible polymer gels for biohybrid artificial pancreas , 1996 .

[92]  Y. Bae,et al.  Drug release from biodegradable injectable thermosensitive hydrogel of PEG-PLGA-PEG triblock copolymers. , 2000, Journal of controlled release : official journal of the Controlled Release Society.

[93]  U. Kompella,et al.  Development and in-vitro evaluation of sustained release poloxamer 407 (P407) gel formulations of ceftiofur. , 2002, Journal of controlled release : official journal of the Controlled Release Society.

[94]  Koch,et al.  A Study of the Temperature-Dependent Micellization of Pluronic F127. , 1999, Journal of colloid and interface science.

[95]  M. Ishihara,et al.  Photocrosslinkable chitosan as a biological adhesive. , 2000, Journal of biomedical materials research.

[96]  D. Attwood,et al.  Percutaneous absorption of non-steroidal anti-inflammatory drugs from in situ gelling xyloglucan formulations in rats. , 2002, International journal of pharmaceutics.

[97]  P. Messersmith,et al.  Thermally Triggered Calcium Phosphate Formation from Calcium-Loaded Liposomes , 1998 .

[98]  J. Jung,et al.  Development of in situ-gelling and mucoadhesive acetaminophen liquid suppository , 1998 .

[99]  A. El-Kamel In vitro and in vivo evaluation of Pluronic F127-based ocular delivery system for timolol maleate. , 2002, International journal of pharmaceutics.

[100]  J. Kost,et al.  Characterization of a polymeric PLGA-injectable implant delivery system for the controlled release of proteins. , 2000, Journal of biomedical materials research.

[101]  A. Hoffman,et al.  Graft copolymers that exhibit temperature-induced phase transitions over a wide range of pH , 1995, Nature.

[102]  Toyoichi Tanaka,et al.  Volume‐phase transitions of ionized N‐isopropylacrylamide gels , 1987 .

[103]  K. Mortensen Block copolymer in aqueous solution: Micelle formation and hard-sphere crystallization , 1993 .

[104]  L. Bromberg Properties of Aqueous Solutions and Gels of Poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide)-g-poly(acrylic acid) , 1998 .

[105]  P. Messersmith,et al.  Thermally and photochemically triggered self-assembly of peptide hydrogels. , 2001, Journal of the American Chemical Society.

[106]  Daniel Cohn,et al.  Improved reverse thermo-responsive polymeric systems. , 2003, Biomaterials.

[107]  B. Chu,et al.  Anomalous association behavior of an ethylene oxide/propylene oxide ABA block copolymer in water , 1987 .

[108]  Sung Wan Kim,et al.  Thermoreversible Gelation of PEG−PLGA−PEG Triblock Copolymer Aqueous Solutions , 1999 .

[109]  Malmsten,et al.  Nonionic Cellulose Ethers as Potential Drug Delivery Systems for Periodontal Anesthesia. , 2000, Journal of colloid and interface science.

[110]  M. Morishita,et al.  Absorption of insulin from pluronic F-127 gels following subcutaneous administration in rats. , 1999, International journal of pharmaceutics.

[111]  T. Johnston,et al.  Poloxamer 407-induced atherogenesis in the C57BL/6 mouse. , 1998, Atherosclerosis.

[112]  P. Ding,et al.  Thermosetting gels with modulated gelation temperature for ophthalmic use: the rheological and gamma scintigraphic studies. , 2002, Journal of controlled release : official journal of the Controlled Release Society.

[113]  N. Sarkar Thermal gelation properties of methyl and hydroxypropyl methylcellulose , 1979 .

[114]  R H Williams,et al.  Poloxamer 407-mediated changes in plasma cholesterol and triglycerides following intraperitoneal injection to rats. , 1992, Journal of parenteral science and technology : a publication of the Parenteral Drug Association.

[115]  P. V. von Hippel,et al.  The structure of collagen and gelatin. , 1961, Advances in protein chemistry.

[116]  K. Anseth,et al.  A review of photocrosslinked polyanhydrides: in situ forming degradable networks. , 2000, Biomaterials.

[117]  Graft copolymers of PEO-PPO-PEO triblock polyethers on bioadhesive polymer backbones: Synthesis and properties , 1997 .

[118]  M. Takada,et al.  Pluronic F-127 gels as a vehicle for topical administration of anticancer agents. , 1984, Chemical & pharmaceutical bulletin.

[119]  A. Adam,et al.  Biocompatibility of thermosensitive chitosan-based hydrogels: an in vivo experimental approach to injectable biomaterials. , 2002, Biomaterials.