A Slimplified Architecture for Modulo (2n + 1) Multiplication

The module (2/sup n/+1) multiplication is widely used in the computation of convolutions and in RNS arithmetic and, thus, it is important to reduce the calculation delay. This paper presents a concept of a module (2/sup n/+1) carry save adder (MCSA) and uses two MCSAs to perform the residue reduction. We also apply Booth's algorithm to the module (2/sup n/+1) multiplication scheme in order to reduce the number of partial products. With these techniques, the new architecture reduces the multiplier's calculation delay and is suitable for VLSI implementation for moderate and large n (n/spl ges/16).

[1]  Hubert Kaeslin,et al.  Regular VLSI architectures for multiplication modulo (2/sup n/+1) , 1991 .

[2]  H. T. Kung,et al.  A Regular Layout for Parallel Adders , 1982, IEEE Transactions on Computers.

[3]  F. Taylor A single modulus complex ALU for signal processing , 1985, IEEE Trans. Acoust. Speech Signal Process..

[4]  A. Bouridane,et al.  Diminished-1 multiplier for a fast convolver and correlator using the Fermat number transform , 1988 .

[5]  D. Radhakrishnan,et al.  Novel approaches to the design of VLSI RNS multipliers , 1992 .

[6]  Irving S. Reed,et al.  The VLSI design of a single chip for the multiplication of integers modulo a Fermat number , 1985, IEEE Trans. Acoust. Speech Signal Process..

[7]  Andrew D. Booth,et al.  A SIGNED BINARY MULTIPLICATION TECHNIQUE , 1951 .

[8]  Mary Jane Irwin,et al.  Regular, area-time efficient carry-lookahead adders , 1985, IEEE Symposium on Computer Arithmetic.

[9]  Costas Efstathiou,et al.  Area-time efficient modulo 2/sup n/-1 adder design , 1994 .

[10]  Satnam Dlay,et al.  VLSI design for diminished-1 multiplication of integers modulo a Fermat number , 1988 .

[11]  David Milford,et al.  A new modulo 2/sup a/+1 multiplier , 1993, Proceedings of 1993 IEEE International Conference on Computer Design ICCD'93.

[12]  A.G.J. Holt,et al.  Cascadable NMOS VLSI circuit for implementing a fast convolver using the fermat number transform , 1987 .

[13]  D. H. Jacobsohn,et al.  A Suggestion for a Fast Multiplier , 1964, IEEE Trans. Electron. Comput..

[14]  Arnold L. Rosenberg,et al.  Toward Efficient Scheduling of Evolving Computations on Rings of Processors , 1996, J. Parallel Distributed Comput..

[15]  L. Leibowitz A simplified binary arithmetic for the Fermat number transform , 1976 .

[16]  Fred J. Taylor,et al.  A VLSI Residue Arithmetic Multiplier , 1982, IEEE Transactions on Computers.

[17]  H. M. Shao,et al.  A parallel VLSI architecture for a digital filter of arbitrary length using Fermat number transforms , 1982 .