A Slimplified Architecture for Modulo (2n + 1) Multiplication
暂无分享,去创建一个
[1] Hubert Kaeslin,et al. Regular VLSI architectures for multiplication modulo (2/sup n/+1) , 1991 .
[2] H. T. Kung,et al. A Regular Layout for Parallel Adders , 1982, IEEE Transactions on Computers.
[3] F. Taylor. A single modulus complex ALU for signal processing , 1985, IEEE Trans. Acoust. Speech Signal Process..
[4] A. Bouridane,et al. Diminished-1 multiplier for a fast convolver and correlator using the Fermat number transform , 1988 .
[5] D. Radhakrishnan,et al. Novel approaches to the design of VLSI RNS multipliers , 1992 .
[6] Irving S. Reed,et al. The VLSI design of a single chip for the multiplication of integers modulo a Fermat number , 1985, IEEE Trans. Acoust. Speech Signal Process..
[7] Andrew D. Booth,et al. A SIGNED BINARY MULTIPLICATION TECHNIQUE , 1951 .
[8] Mary Jane Irwin,et al. Regular, area-time efficient carry-lookahead adders , 1985, IEEE Symposium on Computer Arithmetic.
[9] Costas Efstathiou,et al. Area-time efficient modulo 2/sup n/-1 adder design , 1994 .
[10] Satnam Dlay,et al. VLSI design for diminished-1 multiplication of integers modulo a Fermat number , 1988 .
[11] David Milford,et al. A new modulo 2/sup a/+1 multiplier , 1993, Proceedings of 1993 IEEE International Conference on Computer Design ICCD'93.
[12] A.G.J. Holt,et al. Cascadable NMOS VLSI circuit for implementing a fast convolver using the fermat number transform , 1987 .
[13] D. H. Jacobsohn,et al. A Suggestion for a Fast Multiplier , 1964, IEEE Trans. Electron. Comput..
[14] Arnold L. Rosenberg,et al. Toward Efficient Scheduling of Evolving Computations on Rings of Processors , 1996, J. Parallel Distributed Comput..
[15] L. Leibowitz. A simplified binary arithmetic for the Fermat number transform , 1976 .
[16] Fred J. Taylor,et al. A VLSI Residue Arithmetic Multiplier , 1982, IEEE Transactions on Computers.
[17] H. M. Shao,et al. A parallel VLSI architecture for a digital filter of arbitrary length using Fermat number transforms , 1982 .