Short- and Long-Range Cation Disorder in (AgxCu1–x)2ZnSnSe4 Kesterites

[1]  Kuei-Hsien Chen,et al.  Atomistic insights into highly active reconstructed edges of monolayer 2H-WSe2 photocatalyst , 2022, Nature Communications.

[2]  Hao Ming Chen,et al.  Double-atom catalysts as a molecular platform for heterogeneous oxygen evolution electrocatalysis , 2021, Nature Energy.

[3]  Cheng-Ying Chen,et al.  Impact of Cation Substitution in (Ag x Cu 1− x ) 2 ZnSnSe 4 Absorber‐Based Solar Cells toward 10% Efficiency: Experimental and Theoretical Analyses , 2021, Solar RRL.

[4]  Kuei-Hsien Chen,et al.  Copper Zinc Tin Sulfide Anode Materials for Lithium-Ion Batteries at Low Temperature , 2021, ACS Sustainable Chemistry & Engineering.

[5]  A. Mar,et al.  Mere Anarchy is Loosed: Structural Disorder in Cu2Zn1–xCdxSnS4 , 2021 .

[6]  R. Agrawal,et al.  Atomic Scale Structure of (Ag,Cu)2ZnSnSe4 and Cu2Zn(Sn,Ge)Se4 Kesterite Thin Films , 2021, Frontiers in Energy Research.

[7]  M. Green,et al.  Solar cell efficiency tables (version 57) , 2020, Progress in Photovoltaics: Research and Applications.

[8]  T. Unold,et al.  Surface preparation for 10% efficient CZTSe solar cells , 2020, Progress in Photovoltaics: Research and Applications.

[9]  G. Brennecka,et al.  Utilizing Site Disorder in the Development of New Energy-Relevant Semiconductors , 2020 .

[10]  T. Buonassisi,et al.  Tuning Electrical, Optical, and Thermal Properties through Cation Disorder in Cu2ZnSnS4 , 2019, Chemistry of Materials.

[11]  Jan-Kai Chang,et al.  Interface engineering of CdS/CZTSSe heterojunctions for enhancing the Cu2ZnSn(S,Se)4 solar cell efficiency , 2019, Materials Today Energy.

[12]  X. Gong,et al.  Cu-Zn disorder in stoichiometric and non-stoichiometric Cu2ZnSnS4/Cu2ZnSnSe4 , 2019, AIP Advances.

[13]  Cheng-Ying Chen,et al.  Above 10% efficiency earth-abundant Cu2ZnSn(S,Se)4 solar cells by introducing alkali metal fluoride nanolayers as electron-selective contacts , 2018, Nano Energy.

[14]  Wangda Li,et al.  Extending the limits of powder diffraction analysis: Diffraction parameter space, occupancy defects, and atomic form factors. , 2018, The Review of scientific instruments.

[15]  Q. Yan,et al.  The Role of Surface Defects in Photoluminescence and Decay Dynamics of High-Quality Perovskite MAPbI3 Single Crystals. , 2018, The journal of physical chemistry letters.

[16]  Xiqian Yu,et al.  In situ/operando synchrotron-based X-ray techniques for lithium-ion battery research , 2018, NPG Asia Materials.

[17]  P. Whitfield,et al.  Intrinsic point defects in off-stoichiometric Cu2ZnSnSe4: A neutron diffraction study , 2018 .

[18]  B. Hwang,et al.  A synergistic “cascade” effect in copper zinc tin sulfide nanowalls for highly stable and efficient lithium ion storage , 2018 .

[19]  R. Brutchey,et al.  Solution Deposited Cu2BaSnS4–xSex from a Thiol–Amine Solvent Mixture , 2018 .

[20]  A. Kleppe,et al.  Polymorphism in Cu2ZnSnS4 and New Off-Stoichiometric Crystal Structure Types , 2017 .

[21]  S. Siebentritt High voltage, please! , 2017 .

[22]  D. Abou‐Ras,et al.  Chemistry and Dynamics of Ge in Kesterite: Toward Band-Gap-Graded Absorbers , 2017 .

[23]  F. J. Espinosa-Faller,et al.  Local atomic structure and analysis of secondary phases in non-stoichiometric Cu2ZnSnS4 using X-ray absorption fine structure spectroscopy , 2017 .

[24]  Kuei-Hsien Chen,et al.  Geogrid‐Inspired Nanostructure to Reinforce a CuxZnySnzS Nanowall Electrode for High‐Stability Electrochemical Energy Conversion Devices , 2017 .

[25]  S. Magdassi,et al.  Revealing the Role of Potassium Treatment in CZTSSe Thin Film Solar Cells , 2017 .

[26]  D. Mitzi,et al.  Earth‐Abundant Chalcogenide Photovoltaic Devices with over 5% Efficiency Based on a Cu2BaSn(S,Se)4 Absorber , 2017, Advanced materials.

[27]  T. D. Lee,et al.  A review of thin film solar cell technologies and challenges , 2017 .

[28]  T. Sham,et al.  Identifying barriers to charge-carriers in the bulk and surface regions of Cu2ZnSnS4 nanocrystal films by x-ray absorption fine structures (XAFSs). , 2016, The Journal of chemical physics.

[29]  M. Toney,et al.  Quantifying point defects in Cu2ZnSn(S,Se)4 thin films using resonant x-ray diffraction , 2016 .

[30]  T. Sham,et al.  Controlling Cu2ZnSnS4 photocatalytic ability through alterations in sulfur availability , 2016 .

[31]  Sudip Kumar Batabyal,et al.  Cation Substitution of Solution‐Processed Cu2ZnSnS4 Thin Film Solar Cell with over 9% Efficiency , 2015 .

[32]  A. El Mel,et al.  KCN Chemical Etch for Interface Engineering in Cu2ZnSnSe4 Solar Cells. , 2015, ACS applied materials & interfaces.

[33]  O. Gunawan,et al.  Cu2ZnSnSe4 Thin‐Film Solar Cells by Thermal Co‐evaporation with 11.6% Efficiency and Improved Minority Carrier Diffusion Length , 2015 .

[34]  T. Minemoto,et al.  Investigation of Cu(In,Ga)Se-2 absorber by time-resolved photoluminescence for improvement of its photovoltaic performance , 2014 .

[35]  S. Chang,et al.  Synthesis of CZTSe nanoink via a facile one-pot heating route based on polyetheramine chelation , 2014 .

[36]  G. Mancini,et al.  Quantitative analysis of deconvolved X-ray absorption near-edge structure spectra: a tool to push the limits of the X-ray absorption spectroscopy technique. , 2014, Inorganic chemistry.

[37]  Wei Wang,et al.  Device Characteristics of CZTSSe Thin‐Film Solar Cells with 12.6% Efficiency , 2014 .

[38]  Rommel Noufi,et al.  The state and future prospects of kesterite photovoltaics , 2013 .

[39]  Tayfun Gokmen,et al.  Band tailing and efficiency limitation in kesterite solar cells , 2013 .

[40]  K. Durose,et al.  Luminescence of Cu2ZnSnS4 polycrystals described by the fluctuating potential model , 2013 .

[41]  A. Walsh,et al.  Classification of Lattice Defects in the Kesterite Cu2ZnSnS4 and Cu2ZnSnSe4 Earth‐Abundant Solar Cell Absorbers , 2013, Advanced materials.

[42]  S. Jobic,et al.  Crystal Structures of Photovoltaic Chalcogenides, an Intricate Puzzle to Solve: the Cases of CIGSe and CZTS Materials† , 2012 .

[43]  Aron Walsh,et al.  Kesterite Thin‐Film Solar Cells: Advances in Materials Modelling of Cu2ZnSnS4 , 2012 .

[44]  K. Ryan,et al.  Colloidal synthesis of wurtzite Cu2ZnSnS4 nanorods and their perpendicular assembly. , 2012, Journal of the American Chemical Society.

[45]  Yue Wu,et al.  Nontoxic and abundant copper zinc tin sulfide nanocrystals for potential high-temperature thermoelectric energy harvesting. , 2012, Nano letters.

[46]  M. Altosaar,et al.  XPS study of CZTSSe monograin powders , 2011 .

[47]  S. Schorr The crystal structure of kesterite type compounds: A neutron and X-ray diffraction study , 2011 .

[48]  J. Yun,et al.  Determination of band gap energy (Eg) of Cu2ZnSnSe4 thin films: On the discrepancies of reported band gap values , 2010 .

[49]  J. Rehr,et al.  Parameter-free calculations of X-ray spectra with FEFF9. , 2010, Physical chemistry chemical physics : PCCP.

[50]  Fuqiang Huang,et al.  Thermoelectric properties of tetrahedrally bonded wide-gap stannite compounds Cu2ZnSn1−xInxSe4 , 2009 .

[51]  Hideaki Araki,et al.  Development of CZTS-based thin film solar cells , 2009 .

[52]  B. Munir,et al.  Pulsed laser deposition of quaternary Cu2ZnSnSe4 thin films , 2007 .

[53]  N. Pearsall,et al.  Systematic compositional changes and their influence on lattice and optoelectronic properties of Cu2ZnSnSe4 kesterite solar cells , 2016 .

[54]  V. F. Sears Neutron scattering lengths and cross sections , 1992 .