Conceptual Design of Single-Stage Hybrid Rocket for Scientific Observation in View of Fuels Using Design Informatics

[1]  Shigeru Obayashi,et al.  Knowledge Discovery for Flyback-Booster Aerodynamic Wing Using Data Mining , 2008 .

[2]  Keiichi Hori,et al.  GLYCIDYL AZIDE POLYMER AND POLYETHYLENE GLYCOL MIXTURES AS HYBRID ROCKET FUELS , 2012 .

[3]  Yuasa Saburo,et al.  Controlling Parameters for Fuel Regression Rate of Swirling-oxidizer-flow-type Hybrid Rocket Engine , 2012 .

[4]  Bogdan Filipic,et al.  DEMO: Differential Evolution for Multiobjective Optimization , 2005, EMO.

[5]  Brian J. Cantwell,et al.  Combustion of Liquefying Hybrid Propellants: Part 1, General Theory , 2002 .

[6]  Yuasa Saburo,et al.  Fuel Regression Rate Behavior for Various Fuels in Swirling-Oxidizer-Flow-Type Hybrid Rocket Engines , 2011 .

[7]  Kazuhisa Chiba,et al.  Evolutionary hybrid computation in view of design information by data mining , 2013, 2013 IEEE Congress on Evolutionary Computation.

[8]  Greg Zilliac,et al.  Scale-Up Tests of High Regression Rate Paraffin-Based Hybrid Rocket Fuels , 2004 .

[9]  L. H. Caveny,et al.  Restart transients of hybrid rocket engines. , 1973 .

[10]  Masahiro Kanazaki,et al.  Conceptual Design of Single-Stage Launch Vehicle with Hybrid Rocket Engine for Scientific Observation Using Design Informatics , 2013 .

[11]  H. Kita,et al.  A crossover operator using independent component analysis for real-coded genetic algorithms , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[12]  César Hervás-Martínez,et al.  Theoretical Analysis of the Confidence Interval Based Crossover for Real-Coded Genetic Algorithms , 2002, PPSN.

[13]  Keiichi Hori,et al.  Glycidyl Azide Polymer and Polyethylene Glycol as Hybrid Rocket Fuel , 2012 .

[14]  Takao Suzuki,et al.  A Study on the Regression Rate of Paraffin-based Hybrid Rocket Fuels , 2011 .

[15]  Daisuke Sasaki,et al.  Efficient Search for Trade-Offs by Adaptive Range Multi-Objective Genetic Algorithms , 2005, J. Aerosp. Comput. Inf. Commun..

[16]  Kazuomi Yamamoto,et al.  Knowledge Discovery in Aerodynamic Design Space for Flyback-Booster Wing Using Data Mining , 2006 .

[17]  W. Arthur,et al.  The emerging conceptual framework of evolutionary developmental biology , 2002, Nature.

[18]  T. Kohonen,et al.  Visual Explorations in Finance with Self-Organizing Maps , 1998 .

[19]  Peter J. Fleming,et al.  Genetic Algorithms for Multiobjective Optimization: FormulationDiscussion and Generalization , 1993, ICGA.

[20]  Greg Zilliac,et al.  High Performance Hybrid Propulsion System for Small Satellites , 2013 .

[21]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[22]  Akira Oyama,et al.  Multidisciplinary and Multi-objective Design Exploration Methodology for Conceptual Design of a Hybrid Rocket , 2011 .

[23]  Carlos A. Coello Coello,et al.  Multiobjective Evolutionary Algorithms in Aeronautical and Aerospace Engineering , 2012, IEEE Transactions on Evolutionary Computation.

[24]  Takeshi Takatoya,et al.  Design-Informatics Approach for Intimate Configuration of Silent Supersonic Technology Demonstrator , 2009 .