Optimizations in computing the Duquenne–Guigues basis of implications

In this paper, we consider algorithms involved in the computation of the Duquenne–Guigues basis of implications. The most widely used algorithm for constructing the basis is Ganter’s Next Closure, designed for generating closed sets of an arbitrary closure system. We show that, for the purpose of generating the basis, the algorithm can be optimized. We compare the performance of the original algorithm and its optimized version in a series of experiments using artificially generated and real-life datasets. An important computationally expensive subroutine of the algorithm generates the closure of an attribute set with respect to a set of implications. We compare the performance of three algorithms for this task on their own, as well as in conjunction with each of the two algorithms for generating the basis. We also discuss other approaches to constructing the Duquenne–Guigues basis.

[1]  Catherine Blake,et al.  UCI Repository of machine learning databases , 1998 .

[2]  Bart Selman,et al.  Horn Approximations of Empirical Data , 1995, Artif. Intell..

[3]  Camille Roth,et al.  On Succinct Representation of Knowledge Community Taxonomies with Formal Concept Analysis , 2008, Int. J. Found. Comput. Sci..

[4]  José L. Balcázar,et al.  Construction and learnability of canonical Horn formulas , 2011, Machine Learning.

[5]  Felix Distel,et al.  On the complexity of enumerating pseudo-intents , 2011, Discret. Appl. Math..

[6]  Yves Bastide,et al.  Computing Proper Implications , 2001 .

[7]  Vincent Duquenne,et al.  Familles minimales d'implications informatives résultant d'un tableau de données binaires , 1986 .

[8]  Dana Angluin,et al.  Queries and concept learning , 1988, Machine Learning.

[9]  Michael Frazier,et al.  Learning conjunctions of Horn clauses , 2004, Machine Learning.

[10]  Alan Day,et al.  The Lattice Theory of Functional Dependencies and Normal Decompositions , 1992, Int. J. Algebra Comput..

[11]  Sergei O. Kuznetsov,et al.  Some decision and counting problems of the Duquenne-Guigues basis of implications , 2008, Discret. Appl. Math..

[12]  Sergei O. Kuznetsov,et al.  Comparing performance of algorithms for generating concept lattices , 2002, J. Exp. Theor. Artif. Intell..

[13]  W. W. Armstrong,et al.  Dependency Structures of Data Base Relationships , 1974, IFIP Congress.

[14]  Bernhard Ganter,et al.  Completing Description Logic Knowledge Bases Using Formal Concept Analysis , 2007, IJCAI.

[15]  Bernhard Ganter,et al.  Attribute Exploration with Background Knowledge , 1999, Theor. Comput. Sci..

[16]  David Maier,et al.  The Theory of Relational Databases , 1983 .

[17]  Vincent Duquenne,et al.  Attribute-incremental construction of the canonical implication basis , 2007, Annals of Mathematics and Artificial Intelligence.

[18]  Jan H. P. Eloff,et al.  Building access control models with attribute exploration , 2009, Comput. Secur..

[19]  Marcel Wild,et al.  Computations with Finite Closure Systems and Implications , 1995, COCOON.

[20]  Petko Valtchev,et al.  On the Merge of Factor Canonical Bases , 2008, ICFCA.

[21]  Bernhard Ganter,et al.  Formal Concept Analysis: Mathematical Foundations , 1998 .

[22]  Karell Bertet,et al.  The multiple facets of the canonical direct unit implicational basis , 2010, Theor. Comput. Sci..

[23]  Daniel J. Duffy,et al.  Introduction to the Boost C++ libraries : vol. II - advanced libraries , 2012 .

[24]  Sergei O. Kuznetsov,et al.  Recognizing Pseudo-intents is coNP-complete , 2010, CLA.

[25]  Bernhard Ganter,et al.  Two Basic Algorithms in Concept Analysis , 2010, ICFCA.

[26]  Camille Roth,et al.  Approaches to the Selection of Relevant Concepts in the Case of Noisy Data , 2010, ICFCA.

[27]  Uwe Ryssel,et al.  Fast Computation of Proper Premises , 2011, CLA.

[28]  Philip A. Bernstein,et al.  Computational problems related to the design of normal form relational schemas , 1979, TODS.

[29]  Heikki Mannila,et al.  Design of Relational Databases , 1992 .

[30]  Roni Khardon Translating between Horn Representations and their Characteristic Models , 1995, J. Artif. Intell. Res..