Homological dimension of elementary amenable groups

Abstract In this paper we prove that the homological dimension of an elementary amenable group over an arbitrary commutative coefficient ring is either infinite or equal to the Hirsch length of the group. Established theory gives simple group theoretical criteria for finiteness of homological dimension and so we can infer complete information about this invariant for elementary amenable groups. Stammbach proved the special case of solvable groups over coefficient fields of characteristic zero in an important paper dating from 1970.

[1]  K. Lorensen,et al.  Virtually torsion-free covers of minimax groups , 2015, Annales scientifiques de l'École normale supérieure.

[2]  E. O'Brien,et al.  Algorithms for linear groups of finite rank , 2013, 1905.04546.

[3]  M. Bridson,et al.  Dimension of elementary amenable groups , 2012, 1208.1084.

[4]  B. Nucinkis,et al.  Cohomological finiteness conditions for elementary amenable groups , 2009 .

[5]  Derek J. S. Robinson,et al.  The Theory of Infinite Soluble Groups , 2004 .

[6]  J. Hillman Four-manifolds, geometries and knots , 2002, math/0212142.

[7]  P. Kropholler,et al.  Groups acting on finite dimensional spaces with finite stabilizers , 1998 .

[8]  B. Wehrfritz On elementary amenable groups of finite Hirsch number , 1995, Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics.

[9]  Peter H. Kropholler,et al.  On groups of type (FP) , 1993 .

[10]  J. Hillman,et al.  Elementary amenable groups of finite hirsch length are locally-finite by virtually-solvable , 1992, Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics.

[11]  J. Hillman Elementary amenable groups and 4-manifolds with Euler characteristic 0 , 1991, Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics.

[12]  P. Kropholler Cohomological dimension of soluble groups , 1986 .

[13]  K. S. Brown,et al.  Cohomology with free coefficients of the fundamental group of a graph of groups , 1985 .

[14]  R. Strebel,et al.  On the cohomology of soluble groups II , 1982 .

[15]  R. Bieri,et al.  A geometric invariant for nilpotent-by-abelian-by-finite groups , 1982 .

[16]  P. Hilton Relative nilpotent groups , 1982 .

[17]  R. Bieri,et al.  Homological dimension of discrete groups , 1981 .

[18]  R. Bieri,et al.  A geometric invariant for modules over an Abelian group. , 1981 .

[19]  Gilbert Baumslag,et al.  Constructable solvable groups , 1976 .

[20]  D. Robinson On the cohomology of soluble groups of finite rank , 1975 .

[21]  P. Hilton Localization and cohomology of nilpotent groups , 1973 .

[22]  G. L. Fel'dman ON THE HOMOLOGICAL DIMENSION OF GROUP ALGEBRAS OF SOLVABLE GROUPS , 1971 .

[23]  Urs Stammbach,et al.  On the Weak Homological Dimension of the Group Algebra of Solvable Groups , 1970 .